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timing behaviors are consistent with Bayesian inference, according to
which both previous knowledge (prior) and current sensory informa-
tion determine final responses. However, it is unclear whether the
brain represents temporal priors exclusively for individual modalities
or in a supramodal manner when temporal information comes from
different modalities at different times. Here we asked participants to
reproduce time intervals in either a unisensory or a multisensory
context. In unisensory tasks, sample intervals drawn from a uniform
distribution were presented in a single visual or auditory modality. In
multisensory tasks, sample intervals from the two modalities were
randomly mixed; visual and auditory intervals were drawn from two
adjacent uniform distributions, with the conjunction of the two being
equal to the distribution in the unisensory tasks. In the unisensory
tasks, participants’ reproduced times exhibited classic central-ten-
dency biases: shorter intervals were overestimated and longer inter-
vals were underestimated. In the multisensory tasks, reproduced times
were biased toward the mean of the whole distribution rather than the
means of intervals in individual modalities. The Bayesian model with
a supramodal prior (distribution of time intervals from both modali-
ties) outperformed the model with modality-specific priors in describ-
ing participants’ performance. With a generalized model assuming the
weighted combination of unimodal priors, we further obtained the
relative contribution of visual intervals and auditory intervals in
forming the prior for each participant. These findings suggest a
supramodal mechanism for encoding priors in temporal processing,
although the extent of influence of one modality on another differs
individually.

NEW & NOTEWORTHY Visual timing and auditory timing influ-
ence each other when time intervals in the two modalities are drawn
from two adjacent distributions and are randomly intermixed. A
Bayesian model with a supramodal prior (distribution of intervals
from both modalities) outperforms the model using sensory-specific
priors in describing participants’ performance. A generalized model
further reveals that the prior is represented as a weighted average of
the distribution of time intervals from the two modalities, which differ
individually.
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TO SURVIVE IN A DYNAMIC environment, humans need to accu-
rately estimate the status of the environment, make decisions,
and take action. During this process, not only in the outside
world, but also at every stage of neural processing, signals are
accompanied with noise. Uncertainty is an inherent part of
neural computation (Pouget et al. 2013); yet humans can still
make proper responses to the outside world under such uncer-
tainty. How does the human brain achieve meaningful repre-
sentations of the current state in uncertainty? Recent evidence
suggests that many human behaviors, from perception (Alais
and Burr 2004; Ernst and Banks 2002; Jacobs 1999; Kording et
al. 2007) to sensorimotor control (Koérding and Wolpert 2004;
Wei and Koérding 2009), are consistent with the principles of
Bayesian inference. In the Bayesian framework, a representa-
tion of the current state of the world is a posterior estimate,
which is determined by information from different sources,
including previously acquired knowledge (prior) and current
sensory information (likelihood; Knill and Pouget 2004).

Interval timing, which is a basis for perception and action,
has been shown to be consistent with Bayesian inference in
various tasks, such as sensorimotor coincidence timing (Mi-
yazaki et al. 2005), temporal order judgment (Miyazaki et al.
2006), and time estimation (Acerbi et al. 2012; Ahrens and
Sahani 2011; Cicchini et al. 2012; Jazayeri and Shadlen 2010).
Exposed either to simple uniform distributions (Cicchini et al.
2012; Jazayeri and Shadlen 2010) or to complex temporal
contexts (e.g., highly skewed or bimodal distributions; Acerbi
et al. 2012), participants can achieve an internal representation
of temporal statistics with an approximation and use it to
optimize their timing performance. However, these studies
focus on situations in which temporal information comes from
a single modality, whereas in reality temporal information
often comes from multiple modalities.

When temporal information from different modalities is
simultaneously presented, cross-modal interaction takes place,
with perception dominated by one modality (e.g., auditory
dominance over vision; Morein-Zamir et al. 2003; Repp and
Penel 2002; Welch et al. 1986). According to Bayesian infer-
ence, this occurs because our brain allocates greater weight to
the more reliable sensory processing (Hartcher-O’Brien et al.
2014). In these studies, temporal information from different
modalities is linked to a single event or presented in the same
time window. However, temporal information from different
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modalities can also be separated in time. Results are mixed
concerning this kind of cross-modal interaction. Adaptation to
auditory rhythm does not affect the perception of visual rhythm
(Becker and Rasmussen 2007); in contrast, adaptation to audi-
tory time intervals can influence the perception of the follow-
ing visual apparent motion (Zhang et al. 2012). Training
interval discrimination in the tactile modality can improve
performance in a similar task in the auditory modality (Naga-
rajan et al. 1998), but the interval discrimination learning does
not transfer from the auditory to the visual modality (Lapid et
al. 2009). Whether finding the interaction or not, these studies
only examined the unidirectional cross-modal influence from
one modality to another. When temporal information randomly
comes from different modalities at different times, will the
brain abstract temporal information from all of the modalities
to form a supramodal prior or abstract temporal information
from individual modalities and encode priors exclusively for
each modality?

To address this question, the present study exploited the
central-tendency biases (biases toward the mean of the distri-
bution) of timing (Jazayeri and Shadlen 2010; Lejeune and
Wearden 2009). We asked participants to reproduce time
intervals in different contexts: unisensory and multisensory. In
the unisensory tasks, all of the sample intervals drawn from a
uniform distribution were presented in a single modality (vi-
sual or auditory). The unisensory tasks were used to acquire the
Weber fraction (Gibbon 1977; Malapani and Fairhurst 2002) of
visual timing or auditory timing through Bayesian modeling
(Jazayeri and Shadlen 2010). In the multisensory tasks, sample
intervals were randomly presented in the visual or auditory
modality in different trials. The auditory and visual time
intervals were drawn from two adjacent uniform distributions,
respectively, with the conjunction of the two distributions
being equal to the distribution in the unisensory tasks. The goal
of the multisensory tasks was to directly examine whether the
human brain encodes temporal statistics in a supramodal or a
modality-specific manner. If the brain achieves a supramodal
representation of the priors, participants’ reproduced times
should be biased toward the mean of the whole distribution of
the sample intervals from both modalities; otherwise they
should be biased toward the means of intervals from individual
modalities. To this end, we built a Bayesian model with
parameters (Weber fraction) acquired in the unisensory tasks.
We were interested in whether the model with a supramodal
prior or the model with modality-specific priors would better
describe participants’ timing performance in the multisensory
context.

MATERIALS AND METHODS

Participants. Six students (three women) from Peking University,
aged 1822 yr, participated in this study. All had normal or corrected-
to-normal vision, normal hearing, and were naive to the purpose of the
experiment. The participants gave informed consent before the exper-
iment and were paid afterwards. The study was carried out in accor-
dance with the Declaration of Helsinki and was approved by the
Ethics Committee of the School of Psychological and Cognitive
Sciences, Peking University.

Stimuli and experimental design. The experiment was executed in
a dark, sound-attenuated room. Visual stimuli were presented on a
22-in. CRT monitor at a resolution of 1,024 X 768, driven by a
computer at a refresh rate of 100 Hz. Participants viewed all of the
stimuli binocularly from a distance of 57 cm, and their heads were

maintained as stationary by using a chin-rest. A headset (AKG K271
MKII) was used to deliver sound stimuli. Computer programs of this
study were developed with Matlab 7.1 (MathWorks, Natick, MA) and
Psychophysics Toolbox (Brainard 1997; Pelli 1997).

In each trial, participants were first presented a sample interval
and were then asked to reproduce it by pressing the spacebar key
on the keyboard (Fig. 14). The sample time interval was presented
in the visual or auditory modality. If the sample interval was
presented in the visual modality, two successive white disks with
a visual angle of 1.5° flashed for 100 ms on the computer screen,
demarcating the interval. If the sample interval was presented in
the auditory modality, two successive beeps (1,000 Hz, 62 dB,
duration of 100 ms) emitted by the headset demarcated the interval.

Participants were required to complete four tasks, two unisensory
and two multisensory. We chose 14 sample intervals evenly distrib-
uted and ranging from 810 to 1,200 ms. The 14 sample intervals were
divided into 2 groups, the shorter 7 intervals in one group, and the
longer 7 in the other. In the two multisensory tasks (Fig. 1B), the
group of shorter intervals was presented in the auditory modality, and
the group of longer intervals in the visual modality in the auditory-
visual (AV) task, whereas the mapping between interval groups and
modalities was reversed in the visual-auditory (VA) task. For two
unisensory tasks, all of the sample intervals were presented in the
same modality, either visual (VV task) or auditory (AA task). A
previous study has shown that participants can learn the distributions
of the intervals in ~500 trials (Jazayeri and Shadlen 2010). Here, to
ensure that participants sufficiently learned the distribution of the
intervals, each task had three sessions (672 trials per session), and
only the last two sessions were analyzed. Participants did one session
each day and were allowed to move on to the next task upon
completion of the three sessions in the previous task. It required 12
days to finish all four tasks. The order of the four tasks was pseudo-
randomly scheduled across participants. Participants completed first
the two unisensory tasks and then the two multisensory tasks, or vice
versa. They were informed of the modality conveying time intervals
when they started each session. But they did not know in advance the
modality for the next session, or the next task. They were not told the
differences between the AV task and the VA task either.

Procedure. Each session of each task was divided into 12 blocks,
with 56 trials in each block. In each block, the sample interval in each
trial was randomly chosen from the 14 sample intervals, and each
sample interval was repeated 4 times. Participants took a rest for at
least 1 min between two successive blocks. In each trial, a sample
time interval was presented to participants, and then participants
reproduced it (Fig. 1A).

At the beginning of each trial, a white central fixation point
subtending 0.5° of visual angle appeared on a gray screen. If the
fixation point was a disk, it indicated that the sample interval ¢, would
be presented in the visual modality. If the fixation point was a cross,
it indicated that the sample interval 7, would be conveyed using
auditory beeps. The fixation point remained on the center of the screen
until the participant reproduced the sample interval. For visual trials,
after a variable delay ranging from 1,250 to 1,850 ms drawn randomly
from a truncated exponential distribution, two successive white disks
were presented 5° above the center to demarcate the onset and the
offset of the sample interval 7,. For auditory trials, two successive
auditory beeps were used to demarcate the sample interval .. Regard-
less of the modality in which the sample interval was presented,
participants were instructed to press the space key on the keyboard ¢
ms after the presentation of the second marker of the sample interval.
The reproduced time #, was measured from the end of the second
marker to the time the key was pressed.

After the reproduction in each trial, participants immediately re-
ceived feedback regarding their performance (i.e., “correct,” “too
short,” or “too long”) (Fig. 1C). “Correct” feedback was given by
changing the fixation point from white to green and from 0.5 to 1.5°.
Otherwise, words “too short” or “too long” were presented on the
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Fig. 1. Experimental design and procedure. A: procedure of a visual trial and an auditory trial. At the beginning of each trial, a central fixation point, a disk or
a cross, was presented on a gray screen, indicating a visual trial or an auditory trial, respectively. Participants were required to maintain fixation throughout the
trial. After a variable delay ranging from 1,250 ms to 1,850 ms, two successive white disks (visual trial) or two beeps (auditory trial) were used to demarcate
the onset and the offset of the sample interval 7, ms. Then participants were instructed to press the spacebar key on the keyboard to reproduce #,. The reproduced
time 7, was measured from the end of the second temporal marker to when the key was pressed. After the reproduction, participants immediately received
feedback regarding their performance (i.e., “correct,” “too short,” or “too long”). B: the illustration of the distribution of sample intervals in the multisensory
tasks, AV and VA tasks. The 14 sample intervals were evenly distributed and ranged from 810 ms to 1,200 ms. In the AV task, the seven shorter intervals were
presented in the auditory modality, and the seven longer intervals in the visual modality. In the VA task, the seven shorter intervals were presented in the visual
modality, and the seven longer intervals in the auditory modality. C: the schematic drawing of the feedback schedule. If the reproduced time 7, was in an adjusted
window around the sample interval 7, the fixation point would turn green and increase in size (i.e., “correct”). If , was longer than the upper bound of the adjusted
time window, the “too long” message was presented, and if 7, was shorter than the lower bound of the adjusted time window, the “too short” message was

presented.

center of the screen. Participants achieved a “correct” response if the
reproduced time 7, fell into a time window around the sample interval
t, (t, = k X t), a “too short” response if the reproduced interval was
shorter than the lower bound of the time window (i.e., shorter than
t, — k X t,), and a “too long” response if the reproduced interval was
longer than the upper bound of the time window (i.e., longer than 7, +
k X t.). The parameter k was adaptively adjusted trial by trial based on
participants’ performance. If a “correct” feedback was received in the
given trial, 0.015 was subtracted from k. Otherwise, 0.015 was added
to k. By controlling the width of the specified time window, partici-
pants received “correct” feedback in ~50% of trials for all four tasks
so that participants’ performance was comparable across tasks.

RESULTS

Behavioral results. Average production times across six
participants are shown in Fig. 2A. For the unisensory tasks (VV
and AA tasks), the production times showed the classic central-
tendency biases: they were systematically biased toward the
mean of the distribution of sample intervals (Jazayeri and
Shadlen 2010). For the multisensory tasks (AV and VA tasks),
the production times exhibited cross-modal central-tendency
biases: they appeared to be biased toward the mean of the
distribution of all of the 14 intervals from both the visual and
auditory modalities.

To confirm this observation, we computed the biases for
each participant using the mean production time for a given
sample interval minus the given sample interval. As illustrated
in Fig. 2B, in the four tasks, as the sample intervals became
longer, the value of bias decreased gradually from positive to

negative. Moreover, for unisensory tasks, the mean absolute
value of bias in the auditory task (AA task) was smaller than
that in the visual task (VV task) (Wilcoxon signed-rank test,
P < 0.05). We also computed the percentage of each type of
feedback (“too short,” “too long,” and “correct”) in the AV and
VA tasks (Fig. 2C). For all participants, the percentage of
“correct” was around 50% for both visual trials and auditory
trials in the two tasks. For auditory trials in the AV task and
visual trials in the VA task, the percentage of “too short”
feedback was less than the percentage of “too long” feedback
(Wilcoxon signed-rank test, P < 0.05), indicating that partic-
ipants tended to overestimate sample intervals that were of
shorter durations. For auditory trials in the VA task, the
percentage of “too short” feedback was greater than the per-
centage of “too long” feedback (Wilcoxon signed-rank test,
P < 0.05), indicating that participants tended to underestimate
these seven intervals that were of longer length. For visual
trials in the AV task, however, the percentage of “too short”
was not significantly different from the percentage of “too
long” (Wilcoxon signed-rank test, P = 0.075).

We also computed the mean of the overall error

(\/bias?>+variance) for each participant to confirm the com-
pletion of prior learning. For all of the participants, the overall
error decreased >10% in the second session compared with the
first session at least in one task. Their performance was rela-
tively stable in the last two sessions. The difference in mean
overall error between the last two sessions was <10% for
participants 1-3 in all of the tasks. But for participant 4 in the
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AV task, participant 5 in both AV and VA tasks, and partic-
ipant 6 in VA tasks, the mean overall error decreased 34.5,
44.8, 11.3, and 23.6%, respectively in the third session com-
pared with the second session, which may indicate that they
were still at the stage of active learning. As shown in Fig. 3,
their performance seems to change across sessions, from being
biased toward the mean of the distribution of time intervals
from both modalities to being biased toward the mean of the
distribution of time intervals from individual modalities.

W AA
o 1200 1200
£
o 1100 1100
£
c 1000 1000
9
g
3 900 900
o
=
Q

00 800
800 850 900 950 1000 1050 1100 1150 1200 800 850 900 950 1000 1050 1100 1150 1200

AV VA
7 1200 1200

e (
3
8

1100

=]
S
S

1000

©
=1
S

900

production tim

800:
800800 850 900 950 1000 1050 1100 1150 1200 800 850 900 950 1000 1050 1100 1150 1200
sample interval (ms) sample interval (ms)

B [ I
A%

200

150

AA

(sw) anjena seig

VA

810 870 930 990 1050 1110
Sample interval (ms)

C _ correct - too short

1170

too long
AV - Auditory AV - Visual
100
g
0]
o
8 50
c
Q
<4
)
o
o)
VA - Auditory VA - Visual
100
&
[}
o)
8 50
c
[}
<4
()
o
0 1 2 3 4 5 6 1 2 3 4 5 6
Participant Participant

1247

Bayesian observer model. To explore whether the human
brain encodes temporal statistics through a supramodal mech-
anism, we built the same three-stage (measurement, estimation,
and reproduction) Bayes least squares observer model as
Jazayeri and Shadlen (2010) did. In the measurement stage, for
a given interval 7, the measured interval ¢, by the brain
differed from it because of measurement noise. As timing has
a characteristic of scalar variability (i.e., the standard deviation
of the estimation of given time increases linearly as a function
of given time) (Gibbon 1977; Malapani and Fairhurst 2002),
we assumed that conditional probability distribution p(z,,lz,) is
Gaussian and centered at ¢, with the standard deviation of w, ..
The coefficient w,, is the Weber fraction (ratio of the standard
deviation to the mean), quantifying the amplitude of measure-
ment noise. In the estimation stage, the observer uses ¢,, to get
the estimated time, ¢,, for a given sample interval ¢,. The prior
distribution of sample interval is discrete uniform, but we
simplify it as continuous uniform. According to Bayes’ rule,
the posterior, m(t,lt,,), is the product of the prior multiplied
by the likelihood function and then is normalized. For the
Bayes least squares observer model, the cost function is the
squared error function, (t, — #,)>. The optimal estimated
interval 7, can be derived by minimizing posterior expected
loss, i.e., the integral of the cost function for each ¢,
weighted by its posterior probability, (zz,,). Similar to the
measurement of 7, in the production stage, the produced
time 7, is also accompanied with motor-related noise. We
assumed that the conditional p(z,lz,) is Gaussian centered on
t, with standard deviation w,f,. The parameter w,, indicates
the degree of noise for reproduction. Same as what Jazayeri
and Shadlen (2010) did, we integrated out the two hidden
variables, 7, and ¢,,, by marginalization. The relationship
between the two psychophysically measurable variables, ¢,
and 7, can be described by a Bayesian model with only two
parameters, w,, and w,,. Details about the Bayesian observer
model are provided in the APPENDIX.

Fig. 2. Behavioral results. A: average production times for participants in
unisensory tasks (AA and VV) and multisensory tasks (AV and VA). For
unisensory tasks, all of the sample intervals were presented in a single
modality, visual (VV) or auditory (AA). In the AV task, seven shorter intervals
were presented in the auditory modality, and the seven longer intervals
were presented in the visual modality, whereas the mapping between
interval groups and modalities was reversed in the VA task. The circles and
triangles indicate the average reproduced time for a given visual and
auditory sample interval, respectively. The solid diagonal line exhibits the
unbiased condition with the reproduced time equal to the given time
interval. Error bars represent SD. B: bias of time production for each
participant in all four tasks. The rows are divided into four parts according
to tasks (VV, AA, AV, and VA), in which each row represents one
participant. Each column represents a given sample interval. The value of
the bias is exhibited using gray values. C: the percentage of each kind of
feedback participants received in the multisensory tasks. The “AV-Audi-
tory” and “AV-Visual” conditions, respectively, indicate auditory trials and
visual trials in the AV task. The “VA-Auditory” and “VA-Visual” condi-
tions, respectively, indicate auditory trials and visual trials in the VA task.
For the seven shorter sample intervals (i.e., “AV-Auditory” and “VA-
Visual” conditions), participants received the “too short” feedback less than
the “too long” feedback (Wilcoxon signed-rank test, P < 0.05 for both
conditions). For the seven longer sample intervals, for “VA-Auditory”
condition, participants received the “too short” feedbacks more than the
“too long” feedbacks (Wilcoxon signed-rank test, P < 0.05); for “AV-
Visual” condition, participants received the “too short” feedback the same
amount of times as the “too long” feedback (Wilcoxon signed-rank test,
P = 0.075).
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Fig. 3. Individual participants’ average pro-
duction times for all sample time intervals
across sessions. Top left: participant 4’s per-
formance in the AV task. Top right: partici-
pant 5’s performance in the AV task. Bottom
left: participant 5’s performance in the VA
task. Bottom right: participant 6’s perfor-
mance in the VA task. The circles and asterisks
indicate the average reproduced time for a
given visual and auditory sample interval, re-
spectively. The solid line, the dotted line, and
the dashed line represent the first session, the
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Estimating parameter w,, and w,,. In the unisensory VV and
AA tasks, the prior distribution of sample intervals was uni-
form between 810 and 1,200 ms. We used participants’ per-
formance in tasks VV and AA to compute each participant’s
Weber fraction, w,, and w,, through the Bayes least squares
model (for details see ApPENDIX). The values of w,, and w, are
shown in Fig. 4A. For the measurement Weber fraction, pa-
rameter w,, in visual timing was larger than that in auditory
timing for all the participants (Wilcoxon signed-rank test, P <
0.05). This indicates that the auditory modality was more
reliable than the visual modality in temporal processing. For
the production Weber fraction w,, w, in the visual task (VV)
was equal to that in the auditory task (AA) (Wilcoxon signed-
rank test, P = 0.075), which indicates that uncertainty of
reproduction was the same for visual and auditory interval
timing.

Predicting participants’ performance in AV and VA tasks.
Since parameters w,, and w,, indicate the neural noise related to
sensory measurement and time production, respectively, we
assumed that they were relatively stable for each participant.
That is, in the sensory measurement stage, the likelihood
function p(t,,lt,) for the measurement ¢,, of the same value was
assumed to be the same in the multisensory or unisensory
tasks; in the production stage, the likelihood function p(z,lz,)
for reproduction ¢, of the same value was assumed to be the
same in the multisensory or unisensory tasks. We tested how
the prior was encoded in the audiovisual context using param-
eter w,,, and w, acquired in the unisensory tasks (for details see
APPENDIX).

For the multisensory tasks, we used two models to simulate
each trial based on each participant’s actual sequence of
sample interval #,. For each model, the simulation was con-
ducted 10 times and averaged to reduce variability. Model 1
assumed a supramodal prior, which means that participants
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took the distribution of all of the 14 sample intervals from both
modalities as the prior. Model 2 assumed that participants used
the distribution of seven sample intervals from one modality as
a prior for interval timing in this modality, and the distribution
of seven sample intervals from the other modality as a prior for
interval timing in that modality. Figure 4B illustrates the mean
of the produced time 7, given each sample interval z; by
participants and two models. As can be seen from this figure,
the simulated performance of model 1 with a supramodal prior
(middle column) was more similar to participants’ real behav-
ior (left column) than the performance of model 2 (right
column). To confirm this observation, we compared the mod-
els’ goodness of fit. A model’s goodness of fit, F, was defined
as the log likelihood of z, given ¢, for all of the trials, because
both models have the same parameters. We used the value of
w,, and w,, obtained from the unisensory task to compute the
goodness of fit for each participant in each task. Figure 4C
illustrates the relative goodness of fit of the two models, i.e.,
log likelihood ratio. As expected, model 2°s goodness of fit was
worse than that of model 1 for all of the participants in both VA
and AV tasks, suggesting that participants encode temporal
priors in a supramodal manner (model I) rather than in a
unisensory manner (model 2).

Individual priors in AV and VA tasks. Although model 1
with a supramodal prior outperformed model 2 with sensory-
specific priors for all of the participants, there could be two
potential problems. First, the extent of influence from the
distribution of time intervals in one modality on the timing in
another modality might be different for different participants.
As shown in Fig. 2C, for visual trials in the AV task, the
percentage of “too short” was not significantly different from
the percentage of “too long” (Wilcoxon signed-rank test, P =
0.075). Participant 2 and participant 4 contributed most to the
nonsignificance between “too short” and “too long” feedbacks.
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Fig. 4. Modeling results. A: parameter w,, and w, estimated
from the VV and AA tasks for each participant and for
averages across participants. From /eft to right, the four bars
in each group represent the sensory noise parameter w,, in
the visual modality, sensory noise parameter w,, in the
auditory modality, production noise parameter w, in the
visual task, and production noise parameter w, in the audi-
tory task. The parameter w,, of the visual modality was
larger than that of the auditory modality for all of the
participants (Wilcoxon signed-rank test, P < 0.05). For the
production noise parameter w,, w, of the visual task (VV)
was not significantly different from that of the auditory task
(AA) (Wilcoxon signed-rank test, P = 0.075). B: the real
and simulated performance for all six participants. Data
patterns from left to right were the real data, simulated data
by model 1, and simulated data by model 2. The top row
illustrates the results in the AV task, and the bottom row
illustrates the results in the VA task. Each circle indicates the
mean value of 7, for a given sample interval #,. Each color
represents each participant. The black diagonal line repre-
sents the ideal situation, in which the produced time 1, is
equal to the sample interval ¢,. C: the model comparison for
each participant and averages across participants in the AV
and VA tasks. The vertical axis represents the log likelihood
for model 2 relative to model 1.
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It conflicted with supramodal representation of priors, accord-
ing to which participants should underestimate these longer
visual time intervals, resulting in receiving more “too short”
feedback. Second, we assumed that the noise parameters, w,,
and w,, remained the same across the unisensory and multi-
sensory tasks, which may not be true.

To resolve the two problems, we generalized our model to
capture individual differences in priors by employing weights
and by acquiring the w,, and w,, directly for the multisensory
tasks. In the new model (model 3), the prior is a weighted
average of the prior distribution of visual time intervals and the
prior distribution of auditory time intervals. The weight of the
distribution of the sample intervals of shorter length (auditory
intervals in AV task and visual intervals in VA task) is w, and
the weight of the distribution of the sample intervals of longer
length (visual intervals in AV task and auditory intervals in VA
task) is 1 — w. To help understand the relationship between
model 3 and the other two models, we used w, and wy, to
indicate the weight of distribution of sample intervals from the
same modality for auditory timing and visual timing, respec-
tively. For auditory timing, w, (w in the AV task; 1 - w in the
VA task) indicated the weight of the distribution of sample
intervals from the auditory modality, where 1 - w, indicated
the weight of the distribution of sample intervals from visual
modality. Similarly, for visual timing, wy, (w in the VA task;
1 - w in the AV task) indicated the weight of distribution of
sample intervals from the visual modality, where 1 - wy,
indicated the weight of the distribution of sample intervals
from the auditory modality. If w, and wy, equal to 0.5, the new
model is the same as the model with a supramodal prior (model
1). If w, and wy, equal to 1, the new model is the same as the
model with sensory-specific priors (model 2). Thus, instead of
qualitatively comparing whether the supramodal prior model
(model 1) or the sensory-specific priors model (model 2) better
explained participants’ performance, we employed weights to
quantify the relative contribution of sample intervals from two
modalities. Results in the unisensory tasks showed that the
parameter w, quantifying motor noise was not different for
visual timing and auditory timing. Hence we used one w,, for
both visual and auditory timing. We used participants’ perfor-
mance in the AV and VA tasks to directly get each partici-
pant’s Weber fraction, w,, and w,,, and the weight w through
the new generalized Bayes least-squares model (see APPENDIX).

Figure 5A illustrates individual participants’ weights of the
prior distribution of time intervals from the same modality (w,
for auditory timing and wy, for visual timing) in the AV and VA
tasks. For visual trials in the VA task, all the participants’
weights were between 0.5 and 1, indicating that the distribution
of visual sample intervals contributed more to the prior, but the
distribution of auditory sample intervals also influenced the
computed prior. For visual trials in the AV task, 5 out of 6
participants showed a similar pattern. For auditory timing in
the AV task and VA task, weights varied across participants;
on average, they were close to 0.5. Interestingly, for partici-
pant 5's auditory timing in the AV task, the weight of auditory
time intervals was close to 0. This happened also for partici-
pant 3's auditory timing in the VA task. It suggests that their
visual timing had large influence on their auditory timing in the
audiovisual context.

Next, we simulated participants’ performance again using
the new model (model 3) with individual participants’

SUPRAMODAL REPRESENTATION OF TEMPORAL CONTEXT

weighted priors and new w,, and w,,. As shown in Fig. 5B, the
new model described the experimental data well. We used
Akaike Information Criterion (AIC) to formally compare
model I (supramodal prior, three parameters: visual w,, audi-
tory w,,, and w,), model 2 (unisensory prior, three parameters:
visual w,,, auditory w,,, and w,), and model 3 (weighted prior,
five parameters: weight w, for auditory timing, weight wy, for
visual timing, visual w,,, auditory w,,, and w,). As shown in
Table 1, model 3 was the best (lowest value for AIC) in
describing each participant’s performance in both AV and VA
tasks. Model 1 was better than model 2 except for participant
5 in the VA task; this pattern was consistent with the result of
model comparison between model 1 and model 2 that we
carried out before (Fig. 4C). For the previous model compar-
ison (Fig. 4C), we used w,, and w,, acquired from unisensory
tasks to calculate the goodness of fit for each model; here we
acquired w,, and w, directly from the AV and VA tasks to
calculate the AIC. For participant 5 in VA task, model 2 was
better than model 1, suggesting that participant 5 acquired
unisensory priors in VA task.

Nevertheless, model 3 explained the data best. With model 3,
we acquired w,, and w, in AV and VA tasks. Then we com-
pared the values of the w,, and w), in different tasks (Table 2).
The motor-related noise parameter, w,, was stable across tasks,
but the sensory measurement noise parameter, w,,, did vary
across different tasks.

DISCUSSION

To study whether priors in interval timing are encoded in a
supramodal manner or exclusively for individual modalities,
we manipulated sensory contexts (unisensory vs. multisensory)
in a time interval reproduction task. Our central finding was
that, in the multisensory tasks (i.e., when visual intervals and
auditory intervals drawn from two distinct but adjacent distri-
butions were intermixed), participants’ reproduced times
showed cross-modal central-tendency biases: they were biased
toward the mean of the distribution of sample intervals from
both modalities. The Bayesian model with a supramodal prior
better explained participants’ timing performance in the mul-
tisensory context than the model with modality-specific priors.
Using a Bayesian model with weighted priors, we further
showed that the representation of priors was a weighted aver-
age of the distribution of visual sample intervals and the
distribution of auditory sample intervals, although there were
large individual differences in the weights. The mutual influ-
ences between visual and auditory interval timing suggest a
centralized, supramodal mechanism for encoding priors in
interval timing.

The finding of supramodal encoding of priors provides new
insights on understanding how our brain processes temporal
information from different modalities. The human brain can
integrate simultaneously presented multisensory temporal in-
formation according to Bayesian inference by allocating
greater weight to more reliable sensory processing (Burr et al.
2009; Hartcher-O’Brien et al. 2014). Here we showed that,
when temporal information from different modalities are sep-
arated in time, outside the traditional integration window of
several hundreds of milliseconds (Meredith et al. 1987; Spence
and Squire 2003), participants can statistically learn them as a
supramodal prior and use it to optimize their timing behavior.
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This finding of multisensory contextual calibration in interval
timing is in line with the modality effect (i.e., participants tend
to overestimate auditory stimuli and underestimate visual stim-
uli of equivalent durations when auditory and visual stimuli are

Table 1. Model comparison: AIC for three models in
multisensory tasks for each participant

AIC for Each Participant

Task Model No. 1 2 3 4 5 6

AV 1 -2,765 —1,997 -2,159 -2,119 -3,112 -2,010
2 —2,403 —-1,855 —1,856 —2,038 —2983 —1,634
3 -2,819 —2,028 —2,155 -2,152 —3211 -—2,072

VA 1 —2816 —2,095 —-2278 —2917 -—3402 —1,467
2 -2,557 —-1970 -—2,173 —2,638 —3,467 —1,287
3 —-2,863 —2,130 —2,377 —-2,921 -—3480 —1,480

AIC, Akaike Information Criterion.

810 870 930 990 1050 1110 1170
sample interval (ms)

intermixed within a session; Gu and Meck 2011; Penney et al.
2000; Wearden et al. 1998). This modality effect shows that
there are mutual influences between duration perception of
visual and auditory stimuli. The current finding expands the
modality effect by showing that, when visual and auditory time
intervals are of different durations, they can still affect each
other. Recently, Shi and colleagues (2013) proposed a possible
mapping from Bayesian timing to the information-processing
model of interval timing with three stages: clock, memory, and
decision (Church 1984; Meck 1983; Treisman 1963). They
linked the likelihood to the clock stage and before the reference
memory. The current results of Bayesian timing in the multi-
sensory context can be interpreted in this framework: it is
plausible that sample intervals from both sensory modalities
are mixed and stored in memory to form the temporal priors.
As shown in Fig. 5, the relative weights of the distribution of
time intervals from two modalities were different for visual
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Table 2.

The w,, and w,, in different tasks

Participant No.

Parameter Task 1 2 3 4 5 6 Mean *= SD
w,,-Visual \'A% 0.309 0.185 0.166 0.117 0.098 0.127 0.167 £ 0.077
AV 0.270 0.083 0.178 0.059 0.050 0.207 0.141 = 0.090
VA 0.208 0.146 0.114 0.141 0.082 0.150 0.140 = 0.042
w,,-Auditory AA 0.151 0.116 0.111 0.049 0.040 0.070 0.089 = 0.043
AV 0.110 0.119 0.112 0.070 0.041 0.103 0.092 = 0.031
VA 0.206 0.222 0.040 0.066 0.039 0.230 0.134 = 0.094
w, VV/AA 0.087 0.115 0.116 0.080 0.057 0.119 0.096 = 0.025
AV 0.070 0.101 0.093 0.087 0.063 0.102 0.086 = 0.016
VA 0.071 0.099 0.091 0.065 0.058 0.122 0.084 = 0.024

For w), in the unisensory tasks, it was the mean of w), acquired in the V'V task
and w,, acquired in the AA task.

timing and auditory timing in a certain task, suggesting that
participants took on separate priors for visual timing and
auditory timing. It is possible that participants knew there
should be two separate priors for visual timing and auditory
timing, but they could not accurately extract the distribution of
sample intervals from an individual modality to form the prior
for timing in that modality, because sample intervals from both
modalities were mixed in memory. The representation of prior
for visual timing is partially contributed by the distribution of
auditory time intervals and vice versa, suggesting a supramodal
mechanism underlying time perception.

Findings in the present study challenge the nonexistence of
cross-modal influence in timing tasks (Becker and Rasmussen
2007; Lapid et al. 2009) and the proposal of modality-specific
mechanisms for time perception. Using an adaptation task,
Becker and Rasmussen (2007) showed that adaptation to au-
ditory rhythm did not affect the perception of visual rhythm.
With a learning paradigm, Lapid et al. (2009) found that
interval discrimination learning did not transfer from the au-
ditory to the visual domain. However, the paradigms used in
these studies may not be sensitive enough to reveal the cross-
modal influence. Indeed, using an implicit timing paradigm, we
demonstrated in a previous study that adaptation to auditory
time intervals can influence the perception of the subsequent
visual apparent motion in which the time interval between the
consecutive visual stimuli is crucial (Zhang et al. 2012). In the
present study, the distribution of visual time intervals and
the distribution of auditory time intervals were adjacent and in
narrow temporal windows, and visual trials and auditory trials
were intermixed. Both manipulations could be important for
detecting the mutual influences between visual timing and
auditory timing. If the two distributions were not adjacent, or
they were adjacent but wider (e.g., 500-1,500 ms instead of
current 810—1,200 ms), participants might be able to realize
the modality difference and separate the distribution of visual
time intervals and the distribution of auditory time intervals.
Grahn and colleagues (2011) reported that auditory timing
influenced visual timing but not vice versa in a block design.
For the present setup, if a sensory-specific mechanism under-
lies time perception, we should have observed no mutual
influence. The mutual influences between visual timing and
auditory timing we observed here provides new evidence for a
supramodal mechanism underlying time perception.

Participants’ timing performance in the multisensory context
was suboptimal. They could not extract the precise prior
distribution of intervals in a certain modality, which resulted in

SUPRAMODAL REPRESENTATION OF TEMPORAL CONTEXT

greater errors. As shown in Fig. 5A, participants’ ability of
extracting priors differed between individuals. The sequence of
four tasks (AA-VV-AV-VA, VA-AV-AA-VV, AV-VA-VV-
AA, AV-VA-AA-VV, VA-AV-VV-AA, and VV-AA-VA-AV,
respectively, for the six participants) could not explain the
variation. For example, while both participant 3 and partici-
pant 4 did the AV task first and then the VA tasks, participant
3 showed a sensory-specific prior in visual timing in the VA
task, while participant 4 showed a sensory-specific prior in
visual timing in the AV task. Overall, in both AV and VA
tasks, five of six participants showed that the weight of the
prior distribution of visual sample intervals in visual timing
was greater than the weight of the prior distribution of auditory
sample intervals in auditory timing. The weight was even close
to zero for auditory timing in the AV task for participant 5 and
for auditory timing in the VA task for participant 3, suggesting
that the distribution of visual sample intervals dominated the
prior for auditory timing. Note that, the stronger influence of
visual sample intervals in the present study might be due to the
experimental setup. At the beginning of each trial, a visual disk
or cross indicated whether it was a visual or auditory trial; at
the end of each trial, feedback was also given in visual. The
visual modality provided more task-related information, lead-
ing the participants to rely more on visual sample intervals in
computing the supramodal prior.

The suboptimality of extracting sensory-specific priors was
possibly due to insufficient learning in our tasks because we
tested only three sessions for each task. Although most of
participants’ performance (participants 1, 2, 3, and 6 in the AV
task; participants 1, 2, 3, and 4 in the VA task) was stabilized
after the first session, it might change again with more sessions.
It is plausible that the suboptimality of extracting priors in
timing in the multisensory context occurs at the early stage of
learning, and participants can acquire the sensory-specific
priors with more learning sessions. As shown in Fig. 3, par-
ticipants whose performance was not stabilized in the last two
sessions (participant 4 in the AV task, participant 5 in both the
AV and VA tasks, and participant 6 in the VA task) seem to
show a sign of changing priors from supramodal to sensory-
specific over sessions. However, even if participants can ac-
quire modality-specific priors in the future, the data still sug-
gest that time is processed by a dedicated, supramodal mech-
anism, rather than a sensory-specific mechanism. With
extensive learning, the supramodal mechanism underlying time
perception may separate the visual sample intervals and audi-
tory time intervals. But a sensory-specific mechanism cannot
explain the present findings of mutual influences between
visual timing and auditory timing.

Although in the present study visual timing and auditory
timing influenced each other in a bidirectional manner, modal-
ity differences did exist. For the unisensory tasks, Weber
fraction acquired from the Bayes least squares model was
greater for visual timing than that for auditory timing, suggest-
ing that temporal processing in the auditory modality is more
precise than that in the visual modality (Grondin 2010; Welch
et al. 1986; Westheimer 1999). Moreover, although both audi-
tory timing and visual timing exhibited central-tendency biases
in unisensory tasks, auditory reproduction biases were smaller
than visual ones. These findings are consistent with previous
studies showing that constant error (i.e., the difference between
the estimated/produced and target intervals) and temporal vari-
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ability in reproduction tasks are smaller using auditory than
visual cues (Kolers and Brewster 1985). This phenomenon can
be explained by Bayesian inference: for more uncertain sen-
sory measurements, participants rely more on prior expecta-
tions, resulting in greater bias toward the mean of the prior
distribution. Our results in the AA task were somewhat differ-
ent from those of Cicchini et al. (2012), which showed that
participants did not exhibit the central-tendency biases in the
auditory interval timing tasks. Compared with the distribution
ranging from 847 to 1,200 ms in their studies, we used a wider
range of distribution (810-1,200 ms). According to Bayesian
inference, a wider prior distribution results in greater biases,
and the wider prior may have contributed to the observed
auditory biases in the present study. Further studies are needed
to discern whether the difference between the two studies was
due to the difference in temporal distribution or due to other
factors, e.g., the difference in task background (unisensory vs.
multisensory).

The variability of both visual and auditory timing changed
across different tasks (Table 1). For unisensory timing, the
Weber fraction of visual timing in the VV task was greater than
that of auditory timing in the AA task for all of the participants.
However, for multisensory timing, the auditory timing was no
longer more precise than visual timing in AV and VA tasks.
The discrepancies of Weber fraction seem to be related to
participants’ ability of extracting sensory-specific priors. For
example, for participants 2, 4, and 5, the weight of the
distribution of visual time intervals for visual timing in AV
task was >0.8 (Fig. 5A), and their Weber fraction of visual
timing in AV task decreased ~50% compared with that in the
VYV task. For participant 6, the weight of the distribution of
visual time intervals for visual timing in AV task was <0.5
(Fig. 5A), and the Weber fraction of visual timing in the AV
task increased >50% compared with that in the VV task.
Attention allocation might play a role in both the variability of
timing and the extracting of sensory-specific priors. Previous
studies showed that time perception was more variable when
attention was divided by using multiple temporal targets
(Brown and West 1990) or a nontemporal concurrent task
(Brown 1997). It is possible that, in our multisensory tasks,
when participants allocated more attentional resources to a
certain modality, the timing in that modality was more accu-
rate, and, meanwhile, they could extract more precise (sensory-
specific) priors for the timing in that modality.

The supramodal encoding of priors may generalize to other
tasks beyond interval timing. As priors represent the statistical
information of the environment, intuitively, they should be
extracted from previous sensory inputs and updated over time
by a high-level mechanism. Indeed, previous studies have
shown that likelihood and priors are represented independently
(Beierholm et al. 2009; Vilares et al. 2012). Evidence from a
variety of tasks such as size judgment (Morgan 1992) and
spatial frequency discrimination (Lages and Treisman 1998)
revealed that the central-tendency bias exists extensively
across tasks (Hollingworth 1910; Petzschner et al. 2015). It is
possible that the cross-modal central-tendency bias observed in
the present study occurs for these tasks when information from
different modalities is presented in an intermixed manner. This
calls for future research in line with the present study.

In conclusion, by using an interval reproduction paradigm
and by presenting temporal information either through a single
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modality or through two modalities, we examined how priors
are encoded and to what extent they affect participants’ per-
formance in reproduction tasks. In both the unisensory and
multisensory tasks, we observed similar central-tendency bi-
ases in which the reproduced times were systematically biased
toward the mean of distributions of all of the sample intervals.
The Bayesian modeling further indicated that participants en-
coded priors in interval timing through a supramodal, central-
ized mechanism. The present study illustrates a new approach
toward multisensory interaction.

APPENDIX

Baysian observer model. For a given interval f,, the measured
interval ¢, differs from 7, because of measurement noise. As timing
has a characteristic of scalar variability (i.e., the standard deviation of
the estimation of given time increases linearly as a function of given
time), we assumed that conditional probability distribution p(z,,lt,) is
Gaussian and centered at ¢, with the standard deviation of w,t,.
Parameter w,, is the Weber fraction associated with measurement,

quantifying the amplitude of measurement noise. The likelihood
function A, (#,) could be written as:

M (1) = plinlt) = — o

The prior distribution of sample interval is discrete uniform with

the minimum value 7" and the maximum value 7;"**. For simplifica-

tion, we modeled the prior distribution m(¢,) as continuous uniform.
1

w(t) = o —

— )2

¢ 20002 (AD)

max

.S (A2)
otherwise

for M=yt <1
§ §

0

According to Bayes’ rule, the posterior, m(z,t,,), is the product of
the prior multiplied by the likelihood function and is then normalized.

»n-(tsltm) = f7_‘_(1})17(,;’”|1‘S)dl‘.Y

P (tm l ts) min max
M <t <

rmax . for =1,
t K s
= r‘f)in tmlt dt A3
f 1 p(tlt,)di, otherwise (43)
0

Combined with the cost function /(z,, t,), the estimated interval 7,

e

could be derived from the posterior m(z]t,,). Cost function /(z,, t,)

represents the cost of erroneously estimating #, as 7,. The best
estimated 7, is achieved by minimizing the posterior expected loss.

t,= f(t,) = arg min,e[ f 11, 1) W(txltm)dlx]

Note that the optimal estimate, ¢, is a deterministic function of the
measured interval 7,,. In this deterministic function f(z,,), the subscript
[ reflects a particular cost function. Different Bayesian models can be
built with different decision rules (cost functions). Jazayeri and
Shadlen (2010) found that the Bayes least squares model with cost
function, (£, — t,)>, can successfully describe participants’ perfor-
mance in interval timing. In this study, we used the Bayes least
squares model to describe participants’ performance in audiovisual
interval timing. The estimator function fg; 4(#,,) corresponds to the
mean of the posterior.

(A4)

f;g:l:x lsp([mltx)dts
fBLS(tm) = J‘St'mx—

nin p(tmlts)dts

m
I

(A5)
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Similar to the measurement of ¢, the produced time 7, is also
accompanied with noise. We assumed that the conditional p(z,lz,) is
Gaussian centered on 7, with standard deviation w,f,. The parameter
w,, indicates the degree of noise for reproduction.

- (t,, —1,)2
e 2(wpt€)2

oy - o)
\/ 271'(wpte)2

We then built the mathematical model to describe how the Bayes-
ian observer produces #, from the given sample interval 7. We
canceled out variable 7,, and 7, by several calculations. First, we

applied the chain rule to split the joint conditional distribution of
variables 1, 7, and 7, to three intervening conditional probabilities:

m

Py, Loy Lty Wy W)

= p([plte’ Lins B> Wins Wp)p([eltm’ Ly Wins Wp)p([mltx’ Wins Wp) (A7)

Second, we simplified the above equation by using the relationship
between these variables. For the first term on the right-hand side of
the above Eq. A7, t, is determined by #, and w,, which allows us to
omit the other conditional variables (z,,, ,, and w,,). For the second
term, 7, is determined by z,,, so that ¢, w,,, and w,, can be canceled out.
For the third term, w), is not relevant to t,. So Eq. A7 could be

simplified as:

p(tpv Les tmlt.s’ Wins Wp) = p(tpltev Wp)p(teltm)p(tmltxa Wm) (AS)

Moreover, ¢, is a determinate function of ¢,, t, = f(t,). So the

conditional probability p(z,lz,,) could be written as a Dirac delta
function.

Pty o 1M1 W w,) = p(1,11, w,) 81, = f(1,) (1,115 W,
(A

Next, we omitted the dependence on the two hidden variables 7, and
t,, by marginalization.

p(lpl t,\" Wins Wp)
= ff p(tpa Loyl | Ly Wips Wp)dtmdte
= ffp(tpl Les Wp) 8[te - f(tm)]p(tml Iy Wm)dtmdte

= [ Pt £(8) w1ty w,, ),

Using substitutions from Egs. Al, A5, and A6, Eq. A10 describes
the conditional probability of 7,, given the sample interval 7, and the
model parameter w,, and w,. So far, the relationship between the two
psychophysically measurable variables, #, and 7, can be described by
a Bayesian model with only two parameters, w,,, and w,,.

Estimating parameter w,, and w,,. From Eq. A10 we acquired
the conditional probability p(z,lt,, w,,, w,) given the sample interval 7,
and model parameter w,, and w,,. For simplification, we assumed that
the value of #, is independent across trials, although these values may
be correlated because of the adaptive feedbacks. So the conditional
probability of all the N trials could be written as:

(A10)

N
p(h 2 - Nt woew,) = [T p(ditaw,aw,) @Al
i=1

By taking logarithm of both sides, we could change the products
into sums.

N
logp(t,l,, t,z,, .- -,tﬁ,vlts, Wos wp) = 2 logp(tj,lts, Wos wp) (Al2)
i=1

In the unisensory tasks (VV and AA task), we measured the
reproduced time 7, given certain sample interval 7, using the psycho-
physical method. We gained the parameter w,,, and w,, by maximizing
the Eq. A12, which could be achieved with fminsearch command in
MATLAB (MathWorks). Integrals of Egs. A5 and A0 are not
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analytically solvable and were thus approximated numerically using
the trapezoidal rule.

Predicting participants’ performance in AV and VA tasks.
For the multisensory tasks (AV and VA tasks), we built two Bayesian
models with different priors to explore whether or not the brain
encodes priors in a supramodal manner. Model 1 assumes a supra-
modal prior, which means that participants take the distribution of all
of the 14 sample intervals from both modalities as the prior. Model 2
assumes that participants take the sample interval from a single
modality as a prior. For example, in the AV task, seven intervals
presented in the auditory modality range from 810 to 990 ms, and
seven intervals presented in the visual modality range from 1,020 to
1,200 ms. According to model 1, the prior for auditory and visual timing
is the same, a uniform distribution from 810 to 1,200 ms, whereas in
model 2, the prior for auditory timing is uniform from 810 to 990, and the
prior for visual timing is from 1,020 to 1,200 ms. First, we simulated each
trial based on each participant’s real sequence of sample interval #, using
model 1 and model 2. Then we quantitatively compared the goodness of
fit of model I and model 2. For a model’s goodness of fit, F, we used the
log likelihood of #, given ¢, in all of the N trials. We used the value of w,,
and w, obtained from the unisensory task to compute the goodness of fit,
F, for each participant in each task.

N
F= logp(tl, 112,, .- -,tglts, Wns wp) = E logp(t:,\ts, Wns wp)
o (A13)

Rebuilding individual priors. We generalized our model to
capture individual differences in priors by employing weights. That is,
in the multisensory AV and VA tasks, the prior was a weighted
average of the prior distribution of visual time intervals and the prior
distribution of auditory time intervals. Instead of Eg. A2, we modeled
the weighted prior distribution for visual timing or auditory timing in
Eq. A14, where w is the weight, ranging from O to 1. The weight of the
distribution of the sample intervals of shorter length (auditory inter-
vals in AV task and visual intervals in VA task) is w, and the weight
of the distribution of the sample intervals of longer length (visual
intervals in AV task and auditory intervals in VA task) is 1 — w. The
z‘;“i", tf“di“m, and 7™ are the minimum, the mean, and the maximum of
the distribution of time intervals from both modalities, i.e., 810 ms,
1,005 ms and 1,200 ms, respectively.

w . .
min medium
medium __  min for I =1 < ls

I.V §
1—w
max __medium

t t

s s

0 otherwise

w(ty) = (Al4)

for t;nedlum = 1, <= t;nax

Thus we got the new posterior, m(z,z,,) in Eq. AIS.

e wp(t,,lty)

tmedium
Wf r?}in p(t,lt) + (1 —w) for t?mn =1, < t;nedlum

tmux
f lﬁnediump(tm | tx)
S

m(tlt,,) = < (I = w)p(z,ty)
N R R
f ;g:;iump(tm It,)
G 0 otherwise
(A15)

The new estimator function fi; 5(#,,) is described by Eq. Al6.
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tmcdium i
Wf r?nin t_;p(tm‘[s)dts + (1 - W)f rﬂ]ediumt_yp(tm‘[s)dts
s

s

fBLS(tm) = medium max
Wl Pttty + (1= w) [ sunp i1,
' ' (A16)

Similar to how we got w,, and w,, in the unisensory VV and AA
tasks, we obtained the five parameters, w for visual timing, w for
auditory timing, w,, for visual timing, w,, for auditory timing, and w,
by maximizing Eq. AI2, which could be achieved with fmincon
command in MATLAB.
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