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The human brain can utilize various information to form temporal expectations and optimize perceptual performance. Here we
show dissociated amplitude and phase effects of prestimulus alpha oscillation in a nested structure of rhythm- and sequence-based
expectation. A visual stream of rhythmic stimuli was presented in a fixed sequence such that their temporal positions could be
predicted by either the low-frequency rhythm, the sequence, or the combination. The behavioral modeling indicated that rhythmic and
sequence information additively led to increased accumulation speed of sensory evidence and alleviated threshold for the perceptual
discrimination of the expected stimulus. The electroencephalographical results showed that the alpha amplitude was modulated
mainly by rhythmic information, with the amplitude fluctuating with the phase of the low-frequency rhythm (i.e. phase-amplitude
coupling). The alpha phase, however, was affected by both rhythmic and sequence information. Importantly, rhythm-based expectation
improved the perceptual performance by decreasing the alpha amplitude, whereas sequence-based expectation did not further decrease
the amplitude on top of rhythm-based expectation. Moreover, rhythm-based and sequence-based expectations collaboratively improved
the perceptual performance by biasing the alpha oscillation toward the optimal phase. Our findings suggested flexible coordination of
multiscale brain oscillations in dealing with a complex environment.
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Introduction
We live in a world teemed with temporal regularities: day and
night alternate with each other approximately every 12 h; the
thunder is always heard after the seeing of the lightning. Such
temporal regularity affords the temporal expectation of an event,
which avails to guide perception and action that serve the current
goal (Jones 1976). A few minutes after leaving home for work in a
morning routine, for instance, one can quickly spot the cafe and
grab a coffee without paying attention to the surroundings. In lab-
oratory settings, a stimulus stream with temporal regularity can
lead to improved task performance such as increased accuracy
and/or facilitated reaction times (RTs) in discriminating the per-
ceptual attributes of the expected stimulus (Sanabria et al. 2011;
Cravo et al. 2013; Morillon et al. 2016). The improved perceptual
performance was supported by sharpened neural representation
(de Lange et al. 2018) and earlier neural excitation (Anderson and
Sheinberg 2008) for the expected event.

Temporal expectation can be built upon multiple bases such as
a fixed rhythm or a fixed sequence of a stimulus stream (Nobre
and van Ede 2018). For instance, a red circle can appear every

800 ms (i.e. a regular rhythm of 1.25 Hz), or always come after
two successive blue circles (i.e. a regular sequence). In the case
of a regular sequence, the successive stimuli were not necessarily
presented in a certain rhythm, and hence sequence-based tempo-
ral expectation is dissociable from the rhythm-based expectation.
Although either the rhythmic or the sequence regularity alone can
be predictive of a stimulus, and there is already evidence suggest-
ing both common and dissociable mechanisms of different forms
of temporal expectation (Correa et al. 2014; Breska and Deouell
2017; Bouwer et al. 2020), it remains unclear how the nested
rhythmic and sequence information are combined to affect the
sensorimotor processing and the corresponding behavioral per-
formance. This is of significance as different sources of temporal
regularity are often nested in a real-world situation.

The rhythmic regularity has been associated with neural
entrainment, a process where the intrinsic neural oscillations are
tuned to the rhythm of the external stimuli (Jones 2010; Calderone
et al. 2014; Haegens and Golumbic 2018). By entrainment, a
stimulus gains optimized processing when aligned with the
high-excitability phase of the oscillatory neural signals relative
to the low-excitability phase of the oscillatory signals, and the
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perceptual performance was dependent on the phase of the
entrained activity (Stefanics et al. 2010; Cravo et al. 2013). It
has been shown that the phase synchronization of the low-
frequency (i.e. delta-band) oscillation not only underlined the
temporal expectation afforded by the rhythmic stimuli, but also
the temporal expectation based on memory (Breska and Deouell
2017), suggesting a general role of phase synchronization in
multiple forms of temporal expectation.

Another important component of brain activity that has been
linked to temporal expectation is the alpha-band (∼8–12 Hz)
oscillation, which is suggested as causal for the timing and per-
ceptual processing of the upcoming stimulus (Romei et al. 2010;
Klimesch 2012). On the one hand, the prestimulus alpha oscil-
lation showed decreased amplitude during temporal expecta-
tion, indicating increased neural excitation in preparation for the
expected stimulus (Rohenkohl and Nobre 2011; van Diepen et al.
2015). On the other hand, it has been shown that the temporal
expectation of a stimulus improved the perceptual performance
by tuning the prestimulus alpha oscillation into an optimal phase
(Busch et al. 2009; Samaha et al. 2015). Of note, there is also debate
concerning whether alpha amplitude or alpha phase was respon-
sible for the temporal expectation and the enhanced sensori-
motor processing (van Diepen et al. 2015). One possible account
to explain the 2-fold results is that the amplitude decrease and
the phase concentration of prestimulus alpha activity may play
dissociable roles in different forms of temporal expectation.

In the present study, we asked how the nested temporal expec-
tation by rhythmic and sequence regularity affected the percep-
tual performance of the expected stimulus. For this purpose,
a visual stream of rhythmic stimuli was presented in a fixed
sequence such that their temporal positions could be predicted
by either the low-frequency rhythm, the sequence, or the com-
bination. For each of the three conditions, a visual stream of
arrhythmic was presented as the control. We hypothesized that
the combination of sequence-based expectation and rhythm-
based expectation would benefit the perceptual performance
more than when only one kind of expectation was available.
We predicted that the rhythmic and sequence regularity would
have a combined effect in improving the perceptual performance
of the predicted stimulus, leading to increased accuracy or/and
decreased RT. A perceptual performance engages multiple cog-
nitive modules. In a common perceptual decision-making task,
the perceptual attribute has to be recognized and transformed
into motor responses based on the stimulus–response mapping
defined by the current task. These cognitive modules can be esti-
mated with computational modeling such as the drift-diffusion
model (DDM) (Ratcliff et al. 2016). With the combination of the
DDM, we assessed whether and to which extent the accumulation
speed of perceptual evidence, the threshold of the perceptual
decision, and the speed of motor implementation were affected
by different structures of temporal expectation.

At the neural level, electroencephalographical (EEG) activity
was simultaneously recorded to uncover the neural mechanism.
We hypothesized that the rhythmic stimuli would lead to neu-
ral entrainment, with the onbeat target aligned with the high-
excitability phase and the offbeat target aligned with the low-
excitability phase. To test this hypothesis, we estimated the phase
synchronization of the stimuli frequency both during and after
the stimuli. If the neural oscillation would be entrained by the
rhythmic stimuli, the phase synchronization of the rhythmic
stimuli would be stronger than the arrhythmic stimuli, and this
oscillation would outlast after the offset of the stimuli sequence.
In a second step, we investigated if the low-frequency rhythm

of the visual stimuli communicated with the prestimulus alpha
activity. As it has been suggested that the high-frequency neural
activity can be modulated by the phase of the low-frequency
activity (Lakatos et al. 2008), we expected that there would be
cross-frequency couplings between the low-frequency activity
and the prestimulus alpha activity. Crucially, we aimed to tease
apart the potentially different roles of alpha amplitude and alpha
phase in different temporal expectations. For this purpose, in a
third step, we dissociated the analysis of alpha amplitude and
alpha phase and assessed if the amplitude and the phase would
be distinctively modulated by different structures of temporal
expectation. The DDM was also included to assess to which extent
alpha amplitude and alpha phase could be related to the cognitive
components (Samaha et al. 2020).

Materials and methods
Participants
A total of 26 right-handed university students participated in
this study. One participant was excluded from analysis due to
incomplete data caused by technical errors during the experi-
ment, and another participant was excluded from data analysis
due to excessive artifacts (50% of total trials) of the EEG signals,
resulting in 24 participants (10 females, mean age 20.5 years old).
All participants had normal or corrected-to-normal visual acuity
and normal color vision and reported no history of psychiatric
or neurological disorders. The experiment was carried out in
accordance with the Declaration of Helsinki and was approved by
the Ethics Committee of the School of Psychological and Cognitive
Sciences, Peking University (#2019-12-01).

Stimuli and apparatus
Stimuli were created and presented using Psychtoolbox-3 exten-
sion for MATLAB (Brainard 1997). Stimuli were presented on a
Display++ monitor (1920∗1080 spatial resolution, 120 Hz refresh
rate) against a gray background (Red-Green-Blue color spaces,
RGB:125, 125, 125). The eye-to-monitor distance was fixed at
70 cm. A chin rest was used to maintain the head position and
a constant viewing distance. Responses were collected using a
standard keyboard.

Stimuli were presented in a stream flow at the center of the
screen, one at a time (Fig. 1A). Two types of stimuli were used in
the experiments: standard stimuli and target stimuli. Standard
stimuli were disks of Gaussian noise (radius: 2◦ of visual angle),
each of which was surrounded by a blue ring (RGB: 0, 0, 200).
The disks were created by smoothing Gaussian patches with
a two-dimensional kernel. The smoothing dimension (0.083◦ of
visual degree) and the root-mean-square contrast of the noise
patch were fixed across experiments and participants. Each
target stimulus was a Gabor patch surrounded by a red ring
(RGB:200, 0, 0) and was embedded in the standard stimuli. The
orientation of the Gabor patch was either 135◦ or 45◦ relative
to the horizontal axis, and the spatial frequency of the Gabor
patches was 2 cycles/degree of visual angle. The above-mentioned
parameters of the stimuli were chosen following a previous study
(Rohenkohl et al. 2012). Prior to the experiment, a psychophysical
test was conducted to estimate the contrast threshold with 75%
accuracy in discriminating the orientation of the Gabor patches,
with an adaptive staircase procedure (Kaernbach 1991). The
contrast that 100.1 times of contrast threshold corresponding
to 75% accuracy was used in the formal experiment across
all conditions.
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Fig. 1. Experimental design and behavioral results. (A) Left: The example of stimulus stream in different conditions. The dark gray bars indicate standard
stimuli and the white bars indicate target stimuli. Right: The sequence of stimuli in an example trial. The target was a near-threshold Gabor patch
surrounded by a red ring (illustrated as a white ring here), and the standard stimuli were visual noise surrounded by a blue ring (illustrated as a black
ring here). Participants were asked to make a discriminative response to the orientation of the Gabor patch. (B) Accuracies (left) and RTs (right) are
shown as a function of the experimental conditions. (C) Parameters estimated in the hierarchical drift-diffusion model (HDDM) are shown as a function
of the experimental conditions. Error bars indicate standard errors of the mean (SEM) across participants. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

Experimental design and procedure
There were two types of stimulus streams: the regular stream and
the irregular stream. In both streams, each stimulus remained
on the screen for 50 ms. Within the regular stream, stimuli were
presented at two alternating frequencies (i.e. 1.25 Hz, and 2.5 Hz).
The stimulus onset asynchrony (SOA) between successive stimuli
changed with a fixed rule: five SOAs of 800 ms followed by five
SOAs of 400 ms that was then followed by five 800 ms SOAs
and so on. Every 10 stimuli were grouped into a unit where the
long-SOA stimuli were always followed by the short-SOA stimuli.
Within the irregular stream, the SOA between each successive
two stimuli was randomly chosen from 300 ms, 400 ms, 500 ms,
600 ms, 700 ms, 800 ms, and 900 ms. Within the irregular stream,
every 10 successive stimuli were also grouped into a unit. There

were 17 units in each stream, and the two consecutive units were
connected in an end-to-end manner to avoid hazard rate effects
(Luce 1986).

In each unit, there was a 75% probability that one target
stimulus was embedded in the stream while a 25% probability
that no target was presented at all (no-target, filler unit). No
target was presented in the very first unit of each trial. In the
regular stream, the target was presented at one of the three
temporal positions with equal probability (as shown in Fig. 1A):
(i) the first position of the short-SOA stimuli following the long-
SOA stimuli; (ii) the last position of the short-SOA stimuli that
followed by the long-SOA stimuli in the next unit; (iii) an extra
position inserted after the last position of the short-SOA stimuli
that followed by the long-SOA stimuli. In these three conditions,
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there was always rhythmic information during the presentation
of the stimuli. However, whether the target could be predicted
by the sequence information and whether the target was onbeat
or offbeat differed among the three conditions. In the first of
the above three conditions, the target was highly predictable
because of the fixed sequence structure while nevertheless being
located at an offbeat position of the 1.25 Hz rhythm (S + B–). In
the second condition, the target was also highly predictable while
being located at an onbeat position of the 2.5 Hz rhythm (S + B+).
In the third condition, the target was not expected in the sequence
while being located at an onbeat position of the 2.5 Hz rhythm (S–
B+). In the irregular stream, stimuli were presented with varying
inter-stimulus intervals. The three positions within the irregular
stream (S′ + B′–, S′ + B′+, S′–B′+) were matched with the positions
within the regular stream in the way that the numbers of stimuli
between two target stimuli were the same in the two streams,
and the time intervals before and after the positions within the
irregular stream were consistent with the regular stream. Given
that both the stimulus number and the pre-target intervals were
controlled between regular and irregular conditions, the observed
difference between the two conditions cannot be due to that the
accumulated amount of information was different.

Each trial started with a black central fixation cross (RGB: 0,
0, 0, 1◦ of visual angle), which remained on the screen until a
space key was pressed by the participant to begin the current trial.
The stimulus stream was immediately presented after the key
press. Participants were asked to respond to the orientation of the
target stimulus (left vs. right) with the left and right index fingers,
respectively. They were asked to make responses as quickly and
accurately as possible. A white central fixation cross (RGB: 255,
255, 255, 1◦ of visual angle) was presented at the end of each trial
and remained on the screen for 10 s until the next trial started.

In each trial, there were 158 standard stimuli and 12 target
stimuli, and the target was presented at one of the three positions
with equal probability. Units with different target positions were
mixed and presented in a pseudorandom order such that no more
than two consecutive units had the same target position. There
were 20 trials of the regular stream and 20 trials of irregular
stream, resulting in 240 targets for each of the two streams. The
two types of trials were presented in two separate blocks, with the
order of the two blocks counterbalanced across participants. After
every five trials, there was a 1-min break.

Therefore, the experiment had a 2 (Regularity: regular vs. irreg-
ular) ∗ 3 (Target position: S + B-, S + B+, vs. S–B+) within-subject
design.

Statistical analysis of behavioral data
For each participant, incorrect responses, omissions, and responses
with RTs beyond mean RT ± 3 standard deviation (1.80%) in
each condition were excluded. The mean RT of the remaining
responses for each condition was calculated. The accuracy for
each condition was calculated as the proportion of the number of
correct responses against the total number of targets in each
condition. Accuracy and RTs were subjected to a repeated-
measure ANOVA with target position and stream regularity as
within-subject factors. Given a significant interaction, further
post-hoc tests were conducted to show if the improved behavioral
performances by temporal regularity (i.e. RT and accuracy
difference between regular and irregular conditions) were larger
at one particular position than the other. Note that we did not
test the simple effects of the RTs/accuracies at different positions
(e.g. accuracy at S + B– regular vs. accuracy at S + B+ regular)
because of the different numbers of stimuli before the target
and the different lengths of the interval after the target. As the

number of stimuli and the interval were matched between regular
and irregular conditions, the tests on the RT/accuracy difference
between regular and irregular conditions were not subject to the
different stimuli numbers or different intervals.

The DDM that characterizes the evolving perceptual decisions
in a two-alternative forced-choice task (Sun and Landy 2016;
Tavares et al. 2017; Stafford et al. 2020) was used to model
the behavioral data. Here we estimated three parameters, drift
rate, threshold, and nondecision time to simulate the perceptual
decision-making processes using the hierarchical drift-diffusion
modeling (HDDM) 0.6.0 toolbox (Wiecki et al. 2013). The HDDM
model is a hierarchical Bayesian estimation of drift-diffusion
parameters and generates parameter estimates at both the
individual level and the group level. Omission trials were excluded
prior to modeling and the probability of outlier was set to 5%.
In each experimental condition, for the convergence of the
parameters, each of the three parameters was estimated with
an independent model. Four Markov Monte-Carlo chains were
used to estimate the parameters, with 10,000 samples in each
chain while the first 2,000 samples were discarded as burn-in
to achieve convergence. We computed the R-hat (Gelman-Rubin)
convergence statistics to ensure the convergence of the models
(Gelman and Rubin 1992). Individual parameters were averaged
across the remaining 32,000 samples for further analysis. The
same repeated-measure ANOVA and post-hoc comparisons as
above were performed on the HDDM parameters, with target
position and stream regularity as the within-subject factors.

EEG recording and preprocessing
EEG signals were recorded by 64 Ag/AgCl electrodes mounted
in an elastic cap (Easy-cap Brain Products, Germany) according
to an extending 10–20 system. Vertical electrooculograms (EOG)
were recorded by an electrode placed below the center of the
right eye. The impedance of all electrodes was kept below 5
kΩ. The EEG and EOG signals were amplified by two Brain-Amp

amplifiers (Brain Product, Germany), digitalized to a sample of
500 Hz, and were online filtered by a band-pass filter of 0.016–
100 Hz. EEG signals were online referenced to the FCz electrode.
Preprocessing (denoising and segmenting) was conducted with
EEGLAB toolbox (Delorme and Makeig 2004). The offline data were
band-pass filtered between 0.5 and 60 Hz and re-referenced to the
averaged signal of right and left mastoid electrodes. Independent
component analysis was performed to remove eye-movement and
other artifact components (Drisdelle et al. 2017). Stimulus-locked
epochs were extracted from the interval of −4,000 to 1,500 ms
relative to the target onset. The long epoch was selected to avoid
potential edge effects for the analysis in the frequency domain.
Epochs with amplitude exceeding 100 μV were removed for fur-
ther analysis.

Phase-locking values of low-frequency neural
oscillation
To show the neural entrainment by the rhythmic visual stimuli,
the PLVs of the pre-target activity were calculated over the visual
cortex. The PLVs were expected to be higher in the regular condi-
tion than in the irregular condition for the entrained frequencies.
For each of the occipital channels (Oz, O1, O2, POz, PO3, PO4, PO7,
PO8), the stimulus-locked data (time range: −4,000 to 1,500 ms
relative to target onset) was filtered using a two-way least-squares
finite impulse response (FIR) filter (S + B–: 0.75–1.75 Hz, cen-
ter frequency 1.25 Hz; S + B+ and S–B+: 2.0–3.0 Hz, center fre-
quency 2.5 Hz; eegfilt, EEGLAB). The phase of the filtered data was
obtained with Hilbert transformation. For each participant and
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each condition, the PLVs at each time point were calculated as
the length of the mean vector of the phases across the targets of
a specific condition. For each of the three positions, the difference
in PLVs between the regular and the irregular condition was tested
with a paired-t-test. This test was performed for each time point
of the −400 to 50 ms interval relative to the target onset, with
cluster-based permutation (number of iterations = 1,000, minimum
time duration = 20 ms, cluster level alpha = 0.05) for correcting
multiple comparisons across the time points.

An alternative account could be that the observed PLVs were
solely due to the transient visual stimulations of the individual
stimuli rather than a result of neural oscillation entrained by
the rhythmic stream. To exclude this alternative, we tested if
the low-frequency oscillation sustained in the absence of the
visual stimulations (van Bree et al. 2021). We compared the PLVs
calculated for the data after the last stimulus of each trial in
the regular condition (i.e. posttrial PLVs, Fig. 2C) with the PLVs for
the data before the start of each trial in the regular condition
(i.e. pretrial PLVs). To avoid any smearing effect of filtering on
PLV estimations, the posttrial phase was estimated using Fast-
Fourier Transform in a sliding time window of 1,200 ms (−4,000
to 3,498 ms relative to the last stimulus, step size 2 ms). Zero-
padding method was used to improve the frequency resolution to
5/12 Hz (1/3 of 1.25 Hz and 1/6 of 2.5 Hz). To avoid the impact
of the last stimulus on the PLVs, posttrial PLVs were calculated
within the time interval of 600–2,096 ms relative to the “onset” of
the first omitted stimulus for the trials ended with 1.25 Hz and
the time interval of 600–2,496 ms relative to the “onset” of the
first omitted stimulus for the trials end with 2.5 Hz. Pretrial PLVs
were calculated within the time interval of −2,996 to −1,500 ms
relative to the first stimulus for the trial ended with 1.25 Hz
and the time interval of −3,396 to −1,500 ms relative to the first
stimulus for the trial ended with 2.5 Hz. The time intervals here
referred to the sliding windows, and each time point within the
interval referred to the center of the sliding time window. We avoid
choosing the time interval immediately before the first stimulus
to avoid any confounding factor related to motor preparation (the
first stimulus was presented immediately after the button press
for initiating the current trial). The alternative account can be
ruled out if the posttrial PLVs were stronger than the pretrial PLVs.
Considering the number of trials (20 trials in the regular condition
for each participant), we compared the PLVs between posttrial
and pretrial conditions using a Bootstrapping method (with 1,000
iterations) to ensure statistical reliability. For each iteration, the
trials from a subset of participants (21 out of 24, with replace-
ment) were randomly sampled to calculate the PLVs, with each
estimation based on at least 168 trials. Statistical significance was
assessed with the 95% confidence interval (CI) of the estimated
PLVs.

To test if S + B– was at an antiphase of an optimal phase
of 1.25 Hz entrained neural activity, the difference between the
phase of 1.25 Hz at the target onset and the phase of 1.25 Hz at
the onset of the preceding stimulus before the target was obtained
for each participant. The preceding stimulus was expected to be
at an optimal phase of the entrained neural activity at 1.25 Hz.
Rayleigh test was used to test whether the phase difference was
uniformly distributed or centered ∼180◦. For S + B+ and S–B+, the
phase difference of 2.5 Hz at the target onset between the two
positions was calculated for each participant. The two positions
were expected to be at an optimal phase of the entrained neural
activity at 2.5 Hz. Rayleigh test was used to test whether the phase
difference of 2.5 Hz between S + B+ and S–B+ was uniformly
distributed or centered ∼0◦.

Phase-amplitude coupling analysis
To investigate if the high-frequency activities were affected by
the rhythmic regularity, phase-amplitude coupling (PAC) was per-
formed to test the coupling relationship between the phase of low
frequencies (0.5–5 Hz, in step of 0.25 Hz) and the amplitude of high
frequencies (5–30 Hz, in step of 1 Hz) before the target. The phase
and amplitude time courses for each frequency were extracted
from the Hilbert transformations of the epoch filtered with a
two-way least-squares FIR filter (eegfilt, EEGLAB, frequency range).
The amplitudes of high frequencies were transformed to z-scores
across the time points for each epoch. The PAC was calculated
within the interval of −2,000 to 0 ms relative to target onset at
S + B– and within the interval of −1,000 to 0 ms at S + B+ and
S–B+. A vector of phase-amplitude time course was constructed,
with the phase of the low frequencies as angle and the amplitude
of the high frequencies as length. For each condition and epoch,
the mean vector was calculated over the selected time intervals.
The length of the mean vector was defined as the PAC value
for the low-frequency phase and high-frequency amplitude. To
avoid the bias that may be caused by the nonuniform distribution
of the phase, we normalized the PAC value with nonparametric
permutations (Cohen 2014). Specifically, for each epoch, each
amplitude time course was cut at a random time point, and the
data points before and after the cutting point were swapped.
The PAC value based on the swapped data was calculated. This
calculation was repeated 1,000 times, rendering a distribution of
permutated PAC values. The normalized Z value of the PAC (PACz)
was then obtained by subtracting the mean of the permutated
PAC values from the un-permutated PAC values and divided by
the standard deviation of the permutated PAC values. The PACz

values were averaged across epochs and compared between the
regular and irregular conditions with a paired-t-test. Cluster-based
permutation (number of iterations = 1,000, minimum number of
clusters = 30, cluster level alpha = 0.05) was used for correcting
multiple comparisons across phases and frequencies.

Although PAC analysis showed a coupling relationship between
the phase of entrained frequencies and alpha amplitude (see
results and Fig. 3A), an alternative account for the PAC between
the low-frequency phase and alpha amplitude could be that the
alpha amplitude was simply reset by the individual stimuli rather
than fluctuating with the phase of the low-frequency oscilla-
tion. To test this alternative account, we compared the phase
preferred by alpha (8–12 Hz) amplitude (alpha-preferred phase)
at S + B– (1.25 Hz, regular condition) with the alpha-preferred
phase at S + B+ (2.5 Hz, regular condition), and with the alpha-
preferred at S–B+ (2.5 Hz, regular condition). Here the alpha-
preferred phase in each condition was identified as the phase of
the low-frequency oscillation where the alpha amplitude reached
the peak. If the coupling between the alpha amplitude and the
phase of the low-frequency oscillation was just a by-product
of the physical stimulation, the alpha-preferred phase should
be different between S + B– (1.25 Hz) and S + B+ (2.5 Hz), and
between S + B– (1.25 Hz) and S–B+ (2.5 Hz). To calculate the alpha-
preferred phase, for each participant, three cycles of the low-
frequency oscillation (−2,400 to 0 ms for 1.25 Hz at S + B–; −1,200
to 0 ms for 2.5 Hz at S + B+ and S–B+) before the target onset
were included. The alpha amplitudes were sorted according to the
phases of the low-frequency oscillation and binned with a sliding
phase window of π/3 in radians in a step of π/18. Then the alpha
amplitude was averaged across epochs for each condition, and the
phase at the peak (maximum value) of the alpha amplitude was
defined as alpha-preferred phase (Fig. 3B). The difference between
alpha-preferred phases was calculated and tested against zero
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Fig. 2. Neural entrainment over the occipital cortex. (A) PLVs before target onset are shown as a function of frequency and time (left column: Regular
conditions, middle column: Irregular conditions, right column: Regular vs. irregular conditions; upper row: S + B–, middle row: S + B+, lower row: S–
B+). (B) Left panel: PLVs are shown as a function of the time relative to the target onset in each condition. The black line at the bottom of each graph
indicates the time range where the PLV showed a significant difference between regular and irregular conditions, cluster-based permutation corrected
at P < 0.05. Right panel: The topographical distribution of the PLVs at the target onset. (C) Group-mean PLVs during the posttrial and pretrial periods
in the regular condition. Note that during the posttrial period, the zero point (marked by the red dashed line) refers to the “onset” of the first omitted
stimulus at the end of the regular stream. The vertical black dashed line in the posttrial period indicates the onset of the last stimulus. The vertical
black dashed line in the pretrial period indicates the onset of the first stimulus. The horizontal black dashed lines indicate the two stimuli frequencies
(1.25 Hz and 2.5 Hz). White frames indicate the time windows for the comparison of posttrial versus pretrial PLVs. (D) The PLVs are shown as a function
of the stimuli frequency and the time period. The error bars indicate the 95% CIs. ∗P < 0.05. (E) Left panel: 1.25 Hz phase difference between S + B– and
the previous position of S + B– (pre S + B–). The phase differences were clustered ∼2.94 (radian), Rayleigh test, ∗∗∗P < 0.001. Right panel: 2.5 Hz phase
difference between S + B+ and S–B+. The phase differences were clustered around −0.04 (radian), Rayleigh test, ∗∗∗P < 0.001. The green bar indicates
the mean phase difference across participants. Each gray bar indicates an individual phase difference.

among participants with an analog of one-sample-t-test for circular
data (circ_mtest, CircStat toolbox, MATLAB).

The extraction of alpha amplitude and alpha
phase
For each of the occipital electrodes, the stimulus-locked data (time
range: −4,000 to 1,500 ms relative to target onset) was filtered (8–
12 Hz) using a two-way least-squares FIR filter (eegfilt, EEGLAB).
The filtered data were then transformed with a Hilbert transfor-
mation (hilbert, MATLAB). The alpha phases were extracted from
the transformation and averaged over the occipital electrodes.

To obtain alpha amplitude, in each condition, the average of
the epoched data was firstly subtracted from the data epochs.
This was to remove the evoked components in the data set so
that the confounding effect of alpha phase and alpha amplitude
can be avoided. Then the induced epoch was filtered with a
two-way least-squares FIR filter (8–12 Hz, eegfilt, EEGLAB) and
transformed with Hilbert transformation (hilbert, MATLAB). The
transformed amplitudes were averaged across the occipital
electrodes.

Analysis of pre-target alpha amplitude
For each of the three positions, the averaged alpha amplitudes
across epochs were compared between regular and irregular con-
ditions using a paired-t-test. This test was performed for each time
point of the −400 to 600 ms interval relative to the target onset
with cluster-based permutation (number of iterations = 1,000, mini-
mum time duration = 20 ms, cluster-level alpha threshold = 0.05)
for correcting multiple comparisons across time points. We chose
this time range because it covered both the temporal expectation
of the target and the sensorimotor processing of the target.

To exclude that the amplitude effect of prestimulus alpha was
confounded by the activity related to button presses, the alpha
amplitude in the filler units of the regular condition was also
analyzed as a control condition. There was no button press in
this no-target condition whereas the temporal regularity was
still available to form the expectation. To achieve a fair control
condition, the stimulus positions in the no-target condition were
aligned with the stimulus positions in the regular condition, and
the data was extracted from the time interval of −400 to 600 ms
where the 0-ms point aligned with the target onset in the regular
condition. This alignment and time interval definition were
performed, respectively, for S + B– and S + B+. The same
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Fig. 3. The coupling between alpha amplitude and the phase of the low-frequency oscillation. (A) The PACz are shown as a function of frequencies
for phase (0.5–5 Hz) and amplitude (5–30 Hz) (left column: Regular conditions, middle column: Irregular conditions, right column: Regular vs. irregular
conditions; upper row: S + B–, middle row: S + B+, lower row: S–B+). The black dashed lines (right column) indicate the stimuli frequencies (1.25 Hz at
S + B–, 2.5 Hz at S + B+ and S–B+). The black line on the right of each spectrum (PACz difference between regular and irregular conditions) denotes the
difference of PACz values for the phase of stimuli frequencies. (B) The alpha (8–12 Hz) amplitudes are shown as a function of the phase of the stimuli
frequency for each position. The dashed line indicates the peak of alpha amplitude at each position. Note that the alpha amplitudes were transformed
to z-scores only for visualization. (D) The low-frequency phase preferred by alpha amplitude at S + B– (1.25 Hz, left panel), S + B+ (2.5 Hz, middle panel)
S–B+ (2.5 Hz, right panel). The green bar indicates the mean of the alpha-preferred phase across participants. Each gray bar indicates the alpha-preferred
phase for a specific participant.

paired-t-tests as above were also performed to compare the
alpha amplitudes between regular and no-target conditions, and
between irregular and no-target conditions. Due to the fact that
the target at S–B+ was added in extra and this extra position was
unavailable in the no-target units, these control analyses were
not performed for S–B+.

To examine if the alpha amplitude could be related to the
perceptual performance, we tested if the HDDM parameters (Drift
rate, Threshold, Nondecision time) could be predicted by the
alpha amplitude. For each of the three positions, the amplitude
difference between the regular and irregular conditions, with the
time ranges where significant alpha amplitude differences were
found between regular and irregular conditions, was included in
a regression model that was combined with the HDDM model
(HDDMRegressor, HDDM). By including the regular condition as the
intercept (baseline) and the irregular condition as a fixed regres-
sor, the regression model estimated to which extent the three
HDDM parameters (drift rate, threshold, nondecision time) dif-
ference could be predicted by the amplitude difference between
regular and irregular conditions. The regression coefficient was
estimated using a hierarchical Bayesian estimation method and
the posterior distribution of the regression coefficient was esti-
mated using the Markov chain Monte Carlo techniques (four
chains, 10,000 samples for each chain, the first 2,000 samples
were discarded). The Gelman-Rubin R-hat statistics were used
to assess the convergence of the model parameters. For each of
the three positions, statistical testing was conducted by calculat-
ing the probability of the regression coefficient in the posterior

distribution. The significance criterion (Type-I error threshold)
was set as 0.05. A P > 0.975 suggested that the difference of an
HDDM parameter could be positively predicted by the amplitude
difference, and P < 0.025 suggested that an HDDM parameter
could be negatively predicted by the amplitude difference. In
addition, to assess if the predictability of alpha amplitude on
parameters was affected by different positions, the regression
coefficients of the subject level at different positions were sub-
mitted to a repeated measures of ANOVA.

Analysis of pre-target alpha phase
We also investigated if and how the phase of alpha oscillation
was modulated by the different forms of temporal expectation.
First, we tested if the phase coherence of the prestimulus alpha
oscillation was modulated by the regularity of the steams. The
PLVs of the alpha band (8–12 Hz) were calculated using the same
method as the low frequencies with the interval of −400 to 600 ms
relative to the target onset. For each time point, paired-t-test was
used to test the difference of the alpha PLVs between regular
and irregular conditions, with cluster-based permutation (number
of iterations = 1,000, minimum temporal cluster = 20 ms, cluster-
level alpha threshold = 0.05) for correcting multiple comparisons
across time points. As the amplitude analysis above, the PLVs
of the alpha oscillation were also calculated in the no-target
condition (i.e. filler units). As a control analysis to exclude the
confounding activities related to button presses, the difference of
alpha PLVs between the no-target condition and the regular/irreg-
ular condition was also tested.
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Next, for each of the three positions, we tested if the alpha
phase after the stimulus preceding the target (i.e. pre-target alpha
phase) was different from the alpha phase after the stimulus
two positions before the target (i.e. pre-pre-target alpha phase).
The phase difference was conducted in the regular conditions
provided that the time intervals were random in the irregular
condition. The tests would further disentangle the phase effect
contributed by the sequence-based expectation from the phase
effect contributed by the rhythm. For the pre-target alpha phase,
the 400 ms interval was time-locked to the onset of the pre-
target stimulus; for the pre-pre-target alpha phase, the 400 ms
interval was time-locked to the pre-pre-target stimulus (i.e. the
stimulus two positions before the target). For each time point,
the normalized alpha phases (averaged across epochs) were com-
pared with the Watson–Williams test (Watson and Williams 1956;
Stephens 1969), a circular analog of the t-test, which tests if the
two samples of angles have different phase distributions. Cluster-
based permutation correction was used to correct the multiple
comparisons across time points.

To investigate the relationship between the alpha phase and
the perceptual performance, “optimal” and “non-optimal” alpha
phases were differentiated based on the behavioral response,
with the expectation that the target onset of trials with “good”
responses would be more likely to be localized at an optimal
phase (Samaha et al. 2015). For each participant, trials with correct
responses and incorrect responses were differentiated, and the
correct trials were sorted based on RTs in ascending order. To
achieve comparable numbers of trials, the “good trials” were
defined as the upper quartiles of the sorted correct trials (number
of trials: mean = 109.2, SE = 7.05), and the “bad trials” were defined
as the last 1/6 of the sorted correct trials plus the incorrect trials
(number of trials: mean = 111.2, SE = 18.19). The alpha phases at
the target onset in “good trials” were averaged as the “optimal”
phase; the alpha phases at the target onset in “bad trials” were
averaged as the “non-optimal” phase. The alpha phase difference
between the “good trials” and the “bad trials” was calculated and
tested against zero with an analog of one-sample t-test for circular
data (circ_mtest, CircStat toolbox, MATLAB). For each epoch, the
phase distance was calculated as the difference between the
phase at the target onset and the “optimal” phase. To avoid the
risk of double-dipping, we did not test the difference in phase
distance between different conditions. Instead, we focused on the
predictability of the phase distance on the single-trial perceptual
performance. The same regression models were fitted to estimate
to which extent the HDDM parameters could be predicted by the
phase distance.

Results
Accuracy and RTs
A 2 (Regularity: regular vs. irregular) × 3 (Target position: S + B–,
S + B+, vs. S–B+) repeated-measures ANOVA revealed that the
accuracy was higher in the regular condition (94.6%) than in the
irregular condition (89.4%), F(1, 23) = 25.74, P < 0.001, ηp

2 = 0.528
(Fig. 1B, left). The main effect of position was significant, F(2,
46) = 8.58, P < 0.001, ηp

2 = 0.272. The accuracy was lower at S + B–
(90.4%) than the accuracies at S + B+ (92.9%), pbonferroni = 0.007, and
S–B+ (92.7%), pbonferroni = 0.023, whereas the difference between
S + B+ and S–B+ did not reach significance, pbonferroni > 0.999. There
was an interaction between regularity and target position, F(2,
46) = 5.55, P = 0.007, ηp

2 = 0.194. Further tests showed that the
increased accuracy by regularity was larger at S + B+ (accuracy
difference between regular and irregular conditions: 6.3%) than

that at S + B– (3.0%), t(23) = 3.17, pbonferroni = 0.013. The increased
accuracy by regularity was larger at S–B+ (6.5%) than that at
S + B–, t(23) = 2.78, pbonferroni = 0.032. However, the difference
between S + B+ and S–B+ did not reach significance, t < 1.

The ANOVA on RTs showed that responses were faster in the
regular condition (566 ms) than the responses in the irregular
condition (601 ms), F(1, 23) =15.9, P = 0.001, ηp

2 = 0.408, (Fig. 1B,
right). The main effect of position was also significant, F(2,
46) = 34.5, P < 0.001, ηp

2 = 0.600. Pair-wise comparisons showed
that responses were faster at S + B+ (572 ms), pbonferroni < 0.001,
and S–B+ (578 ms), pbonferroni < 0.001, than responses at S + B–
(602 ms), whereas the difference between S + B+ and S–B+ did
not reach significance, pbonferroni = 0.141. There was a significant
interaction between regularity and position, F(2, 26) = 19.3
P < 0.001, ηp

2 = 0.456. Further tests showed that the facilitated
response by regularity was larger at S + B+ (RT difference between
irregular and regular conditions: 51 ms) than that at S + B–
(14 ms), t(23) = 6.31, pbonferroni < 0.001, and larger at S–B+ (39 ms)
than S + B–, t(23) = 3.60, pbonferroni = 0.005. However, the difference
between S + B+ and S-B+ did not reach significance, t(23) = 2.24,
pbonferroni = 0.105. Considering the long tail of the RTs distribution
which might have confounded the results, the RT results were
verified by log-transforming the RTs. The same pattern of results
was observed with the transformed data (Supplementary Fig. S1).

Hierarchical drift-diffusion modeling
We further modeled the behavioral data with the HDDM (Wiecki
et al. 2013) to elucidate how the multiple cognitive components
were affected by the rhythmic and sequence regularity. The
HDDM estimated three parameters: drift rate, decision threshold,
and nondecision time. Specifically, the drift rate quantified
the accumulation speed of the sensory evidence; the decision
threshold quantified the criteria for the perceptual decision; the
nondecision time quantified the combined time of early stimulus
encoding and the late motor implementation of the decision
(Wiecki et al. 2013). Convergence was achieved for all of the
estimated DDM parameters, R-hats < 1.01.

The 2 × 3 ANOVA revealed that the drift rate was higher in the
regular condition (4.41) than in the irregular condition (3.62), F(1,
23) = 21.5, P < 0.001, ηp

2 = 0.483 (Fig. 1C, left). The main effect of
position was significant, F(2, 46) = 18.9, P < 0.001, ηp

2 = 0.451. Pair-
wise comparisons showed that the drift rate was higher at S + B+
(4.75) than the drift rates at S + B– (3.57), pbonferroni < 0.001, and
S–B+ (3.72), pbonferroni < 0.001, whereas no significant difference
between S + B– and S–B+ was observed, pbonferroni = 0.630. The
interaction between regularity and position was significant, F(2,
46) = 30.6, P < 0.001, ηp

2 = 0.571. Further tests showed that the
enhanced drift rate by regularity was higher at S + B+ (1.25)
than S + B– (0.22), t(23) = 6.82, pbonferroni < 0.001, and S–B+ (0.92),
t(23) = 2.85, pbonferroni = 0.027, and the enhancement was also
stronger at S–B+ than S + B–, t(23) = 5.24, pbonferroni < 0.001.

The ANOVA showed that the decision threshold was higher
in the irregular condition (1.66) than in the regular condition
(1.39), F(1, 23) = 17.1, P < 0.001, ηp

2 = 0.426 (Fig. 1C, middle). The
main effect of position was significant, F(2, 46) = 15.1, P < 0.001,
ηp

2 = 0.396. Pair-wise comparisons showed that the decision
threshold was higher at S + B+ (1.85) than the thresholds at
S–B+ (1.42), pbonferroni = 0.002, and S + B– (1.31), pbonferroni = 0.001,
whereas no significant difference between S + B– and S–B+ was
observed, pbonferroni > 0.167. The interaction between regularity
and position was significant, F(2, 46) = 22.8, P < 0.001, ηp

2 = 0.498.
Further tests showed that the lowered threshold by regularity
was larger at S + B+ (difference of threshold between irregular
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and regular conditions: 0.45) than that at S + B– (0.06), t(23) = 5.59,
pbonferroni < 0.001, and S–B+ (0.30), t(23) = 2.67, pbonferroni = 0.041, and
the threshold decrease was larger at S–B+ than S + B–, t(23) = 5.07,
pbonferroni < 0.001.

The ANOVA on nondecision time showed that the nondecision
time was shorter in the regular condition (0.400) than in the irreg-
ular condition (0.429), F(1, 23) = 28.2, P < 0.001, ηp

2 = 0.551, (Fig. 1C,
right). The main effect of position was significant, F(2, 46) = 7.0,
P = 0.002, ηp

2 = 0.233. Pair-wise comparisons showed that the non-
decision time was longer at S + B– (0.425) than that at S + B+
(0.407), pbonferroni < 0.014, whereas the difference between S + B–
and S–B+ (0.412), pbonferroni = 0.074, and the difference between
S + B+ and S–B+, pbonferroni = 0.533, did not reach significance. The
interaction between regularity and position was significant, F(2,
46) = 25.6, P < 0.001, ηp

2 = 0.527. Further tests showed that the
facilitated nondecision time by regularity was larger at S + B+
(difference of nondecision time between irregular and regular
conditions: 0.044), t(23) = 6.51, pbonferroni < 0.001, and S–B+ (0.036),
t(23) = 5.98, pbonferroni < 0.001, than the facilitated nondecision time
at S + B– (0.009), whereas the difference between S + B+ and S–B+
did not reach significance, t(23) = 1.41, pbonferroni = 0.516.

The low-frequency neural oscillation entrained
by the rhythmic stimuli
The phase-locking values (PLVs) covering the frequency of 0.5–
30 Hz are shown in Fig. 2A. We have assumed that the rhythmic
stimuli would induce low-frequency (i.e. 1.25 Hz for S + B–, 2.5 Hz
for S + B+ and S–B+) neural entrainment over the visual cortex.
As shown in Fig. 2B, the 1.25 Hz PLVs at S + B–, the 2.5 Hz PLVs
at S + B+ and S–B+ were higher in the regular condition than
in the irregular condition (paired-t-test, P < 0.05, with cluster-based
permutation correction), demonstrating the typical neural entrain-
ment synchronized with the rhythmic stimuli. It should be noted
that the stimulus timings (e.g. the intervals both before and after
the target) at each of the three positions were kept the same in
regular and irregular conditions. Therefore, the enhanced PLVs
in the regular condition than the irregular condition cannot be
simply due to the phase-resetting effect induced by the preceding
stimulus. The same pattern of results was observed when a
shorter filter was used to estimate the low-frequency PLVs (two
cycles, Supplementary Fig. S3), suggesting that the above results
cannot be due to confounding effects caused by long filters.

Moreover, as shown in Fig. 2C, the oscillation at the stimu-
lus frequency was still observed after the last stimulus of the
regular stream, when no stimulus was presented. Further anal-
ysis showed that, for trials ended with the 1.25 Hz stimuli, the
1.25 Hz PLVs during the posttrial period (see Materials and meth-
ods and Fig. 2C, upper) were stronger than the PLV during the pre-
trial period (Fig. 2D, left), posttrial: mean = 0.119, 95% CI = [0.099,
0.142], pretrial: mean = 0.038, 95% CI = [0.025, 0.056]. For trials
ended with the 2.5 Hz stimuli, the 2.5 Hz PLVs during the posttrial
period (Fig. 2C, bottom) were stronger than the PLVs during the
pretrial period (Fig. 2D, right), posttrial: mean = 0.061, CI = [0.047,
0.079], pretrial: mean = 0.035, CI = [0.026, 0.044]. To verify if the
higher PLVs in the posttrial interval were specific to the low-
frequency rhythmic stimuli, we conducted the same comparison
on a control frequency of 25/6 Hz (10 times the frequency reso-
lution). We chose this frequency because it was still in the low-
frequency band, and was not an integer multiple of the entrained
frequencies (i.e. 1.25 Hz and 2.5 Hz). The results showed no
significant difference between posttrial and pretrial intervals. For
trials ended with the 1.25 Hz stimuli, posttrial: mean = 0.065, 95%
CI = [0.050, 0.078], pretrial: mean = 0.061, 95% CI = [0.045, 0.082].

For trials ended with the 2.5 Hz stimuli, posttrial: mean = 0.059,
95% CI = [0.049, 0.073], pretrial: mean = 0.049, 95% CI = [0.038,
0.063]. Collectively, these results suggested that the neural oscil-
lation sustained even after the termination of the visual stimula-
tion, a pattern consistent with van Bree et al. (2021). Therefore, the
stronger PLVs in the regular condition cannot be simply due to the
transient responses to the individual stimuli, but rather a result of
neural entrainment by the rhythmic stream. However, the rhyth-
mic neural responses during the stimuli presentation cannot be
taken as completely unaffected by the visual stimulations.

For the phase comparison, the 1.25 Hz phase of S + B– was at
an opposite phase (antiphase) of an optimal phase predicted by
the 1.25 Hz neural entrainment, as shown by the phase difference
(centered mean = 2.94) between S + B– and its preceding position,
P < 0.001 (Rayleigh Test, radian, Fig. 2E left). By contrast, the 2.5 Hz
phases of S + B+ and S–B+ were both at an optimal phase pre-
dicted by the 2.5 Hz neural entrainment. The phases were the
same, as shown by the phase difference (centered mean = −0.04)
between these two positions, P < 0.001 (Rayleigh Test, radian, Fig. 2E
right).

The coupling between low-frequency oscillation
and alpha activity
To test if there were couplings between the low-frequency and the
high-frequency oscillations, we calculated the phase-amplitude
coherence (PAC) between the phase of the low-frequency (0.5–
5 Hz) oscillations and the amplitude of the high-frequency (5–
30 Hz) activities before the target. The regular condition showed
stronger PACz (Z scored PAC values) than the irregular condition
between the phase of 1–1.5 Hz and the amplitude of 6–27 Hz
at S + B– (cluster-based permutation corrected at P < 0.05, Fig. 3A
upper right), stronger PACz between the phase of 2.25–2.75 Hz and
the amplitude of 7–14 Hz at S + B+ (cluster-based permutation
corrected at P < 0.05, Fig. 3A middle right), and stronger PACz

between the phase of 2.25–2.75 Hz and the amplitude of 7–17 Hz
at S–B+ (cluster-based permutation corrected at P < 0.05, Fig. 3A
bottom right). These results suggested that there was a significant
cross-frequency coupling between the phase of the low-frequency
oscillations (1.25 Hz and 2.5 Hz) and the amplitude of the high-
frequency oscillations, which manifested at the alpha band. The
periodical characteristics of the neural oscillations at the three
positions can be seen in Supplementary Fig. S2. The same pattern
of results was observed when a shorter filter (two cycles for low
frequency, three cycles for high frequency) was used to estimate
the PACz (Supplementary Fig. S3).

As shown in Fig. 3B and C, the alpha-preferred phase at S + B–
(1.25 Hz) was not significantly different from the alpha-preferred
phase at S + B+ (2.5 Hz, phase difference =−0.113, CI = [−0.868,
0.643]). Similarly, the alpha-preferred phase at S + B– (1.25 Hz)
was not significantly different from the alpha-preferred phase
at S–B+ (2.5 Hz, phase difference = −0.072, CI = [−0.551, 0.407]).
The results suggested that the coupling between the alpha ampli-
tude and the phase of the low-frequency oscillations cannot
be simply due to the transient stimulations of the individual
stimuli.

Prestimulus alpha amplitude under different
structures of temporal expectation
As shown in Fig. 4A, the amplitude of the prestimulus alpha activ-
ity over the visual cortex was higher in the regular condition than
in the irregular condition at S + B–, with a significant temporal
cluster of −400 to −290 ms relative target onset (cluster-based
permutation corrected at P < 0.001). By contrast, the alpha amplitude
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Fig. 4. Results of alpha amplitudes. (A) Alpha amplitudes are shown as a function of time points relative to the target onset for each experimental
condition. The black bar at the bottom of each graph indicates a significant difference between regular and irregular conditions; the gay bar indicates
a significant difference between no-target and irregular conditions (cluster-based permutation corrected at P < 0.05). The shadows denote SEM across
participants. The example of the stimulus stream on the top of each graph illustrates the interested temporal locations. (B) Alpha amplitudes averaged
over the significant cluster in (A) are shown as a function of the experimental conditions error bars indicate SEM across participants. To avoid “double-
dipping,” we did not test the difference between regular and irregular conditions, but rather compared the absolute difference (regular vs. irregular) of
amplitudes between positions (see Results). (C) The group-level posterior distribution of the regression coefficient was estimated with the regression
model for each target position and each one of the HDDM parameters. The regression model quantified to which extent the HDDM parameters could
be predicted by alpha amplitude. The black dashed line denotes a 95% CI, and the red dashed line denotes 0 point. (D) The individual-level regression
coefficients (mean value with SEM) estimated with the regression model are shown as a function of the target position. Error bars indicate SEM across
participants. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

was lower in the regular condition than in the irregular condition
at S + B+ and S–B+ (both P < 0.001 with cluster-based permutation
correction): a significant temporal cluster of −400 to 480 ms at
S + B+ and a significant temporal cluster of −400 to 512 ms at
S–B+. The same pattern of results was observed when a shorter
filter (three cycles) was used to estimate the alpha amplitude
(Supplementary Fig. S3).

The reversed pattern of alpha amplitude between S + B– and
S + B+/S–B+ conditions suggested that the alpha amplitude was
mainly modulated by the phase of the low-frequency oscilla-
tion but was not additionally modulated by the sequence-based
expectation. To further test this hypothesis, we compared the
amplitude difference between regular and irregular conditions
at S + B– with the amplitude difference between irregular and
regular conditions (i.e. the reverse of the difference between reg-
ular and irregular conditions) at S + B+/S–B+. For each position,
the alpha amplitudes were extracted from the significant cluster
to calculate the mean difference between regular and irregular
conditions (Fig. 4B). To avoid making statistical inferences based
on nonsignificant P-values, we performed the Bayes Factor anal-
ysis to quantify the likelihood of the null hypothesis against the

alternative hypothesis (Keysers et al. 2020). The results showed
that the hypothesis “the deceased amplitude at S+B+ was equiv-
alent to the decreased amplitude at S-B+” was 4.46 times more
likely to be true than the alternative hypothesis “the decreased
amplitude at S+B+ was different from the decreased amplitude
at S-B+”. Moreover, the hypothesis “the decreased amplitude at
S+B+ was equivalent to the increased amplitude at S+B-” was 3.60
times more likely to be true than the alternative hypothesis “the
decreased amplitude at S+B+ was different from the increased
amplitude at S+B-”.

In addition, at S + B–, the alpha amplitude was higher in the no-
target condition than in the irregular condition, with a significant
temporal cluster of −400 to −260 ms relative to target onset
(cluster-based permutation corrected at P < 0.05), whereas there
was no difference between the regular and the no-target condition
(Fig. 4A). At S + B+, the alpha amplitude was lower in the no-
target condition than in the irregular condition, with a signifi-
cant temporal cluster of −400 to 194 ms relative to target onset
(cluster-based permutation corrected at P < 0.05), whereas there
was no difference between the regular and the no-target condition
(Fig. 4A). These results suggested that the increased/decreased
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alpha amplitude in the regular (vs. irregular) condition cannot be
related to the button press, as the same pattern was observed in
the no-target condition.

To assess if and how the amplitude of pre-target alpha activity
could be related to the perceptual performance of the target,
we tested if the HDDM parameters (drift rate, threshold, and
nondecision time) could be predicted by the alpha amplitude. For
each position and each HDDM parameter, a regression model that
combined with the HDDM was constructed to estimate to which
extent the amplitude difference between regular and irregular
conditions could predict the difference of the HDDM parameter
between regular and irregular conditions. Convergence was
achieved for all estimated regression coefficients, R-hats < 1.01.
The results of the regression models are shown in Fig. 4C.
The drift rate could be negatively predicted by the alpha
amplitude at S + B+ (mean regression coefficient = −0.082), P
(coefficient > 0) = 0.004, with the drift rate increasing linearly as
the alpha amplitude was decreased by regularity (Fig. 4C, left).
The predictability did not reach significance at S + B– (mean
regression coefficient = −0.026), P (coefficient > 0) = 0.152, whereas
was marginally significant at S–B+ (mean regression coeffi-
cient = −0.09), P (coefficient > 0) = 0.034 (Type-I error threshold of
0.025 given the two directions of correlation, see Materials and
methods). In addition, the ANOVA on the coefficients showed
a main effect of position, F(2, 46) = 7.18, P = 0.002, which was
due to higher predictability at S + B+ (pbonferroni < 0.001) and S–
B+ (pbonferroni = 0.012) than at S + B–. No significant difference was
observed between S + B+ and S–B+, pbonferroni > 0.999 (see Fig. 4D,
left).

The decision threshold could be positively predicted by the
alpha amplitude at all of the three positions:S + B– (mean regres-
sion coefficient = 0.013), P (coefficient > 0) = 0.990, S + B+ (mean
regression coefficient = 0.085), P (coefficient > 0) > 0.999, and S–B+
(mean regression coefficient = 0.075), P (coefficient > 0) > 0.999 (see
Fig. 4C, middle), with the decision threshold decreasing linearly
as the alpha amplitude was decreased by regularity. In addi-
tion, the ANOVA on coefficients showed a main effect of posi-
tion, F(2, 46) = 15.0, P < 0.001. The predictability was higher at
S + B+, pbonferroni = 0.001 and S–B+, pbonferroni < 0.001 than S + B–. No
significant difference was observed between S + B+ and S–B+,
pbonferroni > 0.999 (Fig. 4D, middle).

The nondecision time could be positively predicted by the alpha
amplitude at all of the three positions: S + B– (mean regression
coefficient = 0.002), P (coefficient > 0) = 0.999, S + B+ (mean regres-
sion coefficient = 0.007), P (coefficient > 0) = 0.999, and S–B+ (mean
regression coefficient = 0.007), P (coefficient > 0) > 0.999 (Fig. 4C,
right), with the nondecision time decreasing linearly as the alpha
amplitude was decreased by regularity. In addition, the ANOVA on
the coefficients showed a main effect of position, F(2, 46) = 13.6,
P < 0.001. The predictability was higher at S + B+, pbonferroni = 0.004
and S–B+, pbonferroni < 0.001 than S + B–. No significant difference
was observed between S + B+ and S–B+, pbonferroni > 0.999 (Fig. 4D,
right).

Prestimulus alpha phase under different
structures of temporal expectation
At S + B–, higher alpha PLVs were observed in the regular condition
than in the irregular condition at the interval of 52–292 ms relative
to target onset (cluster-based permutation corrected at P < 0.05,
Fig. 5A). At S + B+, higher alpha PLVs were observed in the regular
condition than in the irregular condition at the interval of −312
to −58 ms relative to target onset (cluster-based permutation
corrected at P < 0.05), and at the interval of 84–316 ms relative to

the target onset (cluster-based permutation corrected at P < 0.05).
At S-B+, higher alpha PLVs were observed in the regular condition
than in the irregular condition at the interval of −356 to −82 ms
relative to the target onset (cluster-based permutation corrected
at P < 0.05). While the increased alpha PLVs before target onset
suggested phase effects of prestimulus alpha for the target, the
increased alpha PLVs after target onset suggested phase effects of
prestimulus alpha for the stimulus immediately after the target.
In addition, at S + B+, higher PLVs were observed in the no-target
condition than in the irregular condition at the interval of −226
to −106 ms relative to target onset, suggesting that the observed
phase effect cannot be simply due to button presses. The same
pattern of results was observed when a shorter filter (three cycles)
was used to estimate the alpha phase (Supplementary Fig. S3).

Here the enhanced PLVs of pre-target alpha at both S + B+
and S–B+ but not at S + B– suggested that the alpha phase
was critically modulated by rhythm-based expectation. The pre-
target phase effect was not observed at S + B–, which might lead
to the suggestion that the alpha phase was not modulated by
sequence-based expectation. However, this null effect at S + B–
could be a result of counteracting phase effects contributed
by the sequence-based expectation and the antiphase of the
stimulus rhythm. To test if the alpha phase was modulated
by sequence-based expectation, we compared the alpha phase
during the time interval before the target (pre-target alpha
phase, regular condition) with the alpha phase prior to the
stimulus immediately before the target (pre-pre-target alpha
phase, regular condition) for each of the three positions. During
these two intervals, the neural entrainment induced by the
rhythmic stimuli was locked to the same low-frequency phase
so that any observed difference should be attributed to the
sequence-based expectation. To consider the different lengths of
the two intervals at S + B–, the comparison was performed on the
400 ms range that was time-locked to the onset of the stimulus
before the two intervals (i.e. the onset of the pre-target stimulus
for the pre-target alpha phase, the onset of the pre-pre-target
stimulus for pre-pre-target phase). At S + B–, the alpha phases
showed significant differences during the time interval of 324–
400 ms relative to the stimulus onset, P < 0.001 (Watson–Williams
test, with cluster-based correction) (Fig. 5B). At S + B+, the alpha
phases showed significant differences during the time interval of
320–382 ms relative to the stimulus onset, P < 0.001 (with cluster-
based correction). At S–B+, however, no significant difference
in the alpha phase was observed. These results suggested that
sequence-based expectation (S + B–, S + B+) of the target changed
the pre-target alpha phase.

The alpha phase showed a significant difference between “good
trials” and “bad trials,” with a mean phase difference = 0.36 (95%
CI = [0.02, 0.70], circ_mtest, CircStat toolbox, MTLAB), confirming
a valid differentiation between the optimal and nonoptimal
alpha phase. Then the trial-by-trial phase distance relative
to the optimal phase modeled to assess to which extent the
HDDM parameters could be predicted by the phase distance.
Convergence was achieved for all regression coefficients, R-
hats < 1.01. The drift rate could be negatively predicted by the
phase distance at S + B+ (mean regression coefficient =−0.307),
P (coefficient > 0) < 0.001, and S–B+ (mean regression coeffi-
cient =−0.202), P (coefficient > 0) < 0.001, (Fig. 4C, left), with the
drift rate increasing linearly as the alpha phase was closer to
the optimal alpha phase, whereas the predictability at S + B–
(mean regression coefficient = −0.139) did not reach significance,
p (coefficient > 0) = 0.037 (> 0.025). The ANOVA on the coefficients
showed a main effect of position, F(2, 46) = 28.2, P < 0.001, which
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Fig. 5. Results of the alpha phase. (A) PLVs of alpha are shown as a function of time points relative to the target onset for each experimental condition.
The example of the stimulus stream on the top of each graph illustrates the range of the time courses. The black bar at the bottom of the graph indicates
the temporal cluster with a significant difference between regular and irregular conditions; the gay bar at the bottom of the graph indicates the temporal
cluster with a significant difference between the no-target and irregular conditions, cluster-based permutation corrected at P < 0.05. (B) Filtered and
normalized alpha amplitudes in the regular condition are shown as a function of time. For each target position (S + B–, S + B+, and S–B+), two time
courses are shown and were compared: The time-course locked to the onset of the stimulus immediately before the target (pre-target), and the time
course locked to the onset of the stimulus two positions before the target (pre-pre-target). The example of the stimulus stream on the top of each graph
illustrates the temporal locations of the two time courses. The black bar at the bottom of the graph indicates the temporal cluster with a significant
difference between the two time courses, cluster-based permutation corrected at P < 0.05. (C) The group-level posterior distribution of the regression
coefficient estimated with the regression model for each target position and each one of the HDDM parameters. The regression model quantified to
which extent the HDDM parameters could be predicted by the distance between the alpha phase at the target onset and the optimal alpha phase. The
black dashed line denotes a 95% CI, and the red dashed line denotes 0 point. (D) The individual-level regression coefficients (mean value with SEM)
estimated with the regression model are shown as a function of the target position. Error bars indicate SEM across participants. ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001.

was due to higher predictability at S + B+ (p bonferroni < 0.001) and
S–B+ (P bonferroni = 0.046) than S + B–, and also higher predictability
at S + B+ than S–B+, P bonferroni < 0.001 (Fig. 5D, left).

The decision threshold could be positively predicted by the
phase distance at S + B+ (mean regression coefficient = 0.157), P
(coefficient > 0) > 0.999, S–B+, (mean regression coefficient = 0.101),
P (coefficient > 0) > 0.999, and S + B– (mean regression coeffi-
cient = 0.042), P (coefficient > 0) = 0.976 (see Fig. 5C, middle), with
the decision threshold decreasing linearly as the alpha phase
was closer to the optimal phase. The ANOVA on the coefficients
showed a main effect of position, F(2, 46) = 46.3, P < 0.001. The
predictability was higher at S + B+ than S + B– (Pbonferroni < 0.001)
and S–B+ (Pbonferroni < 0.001) and was also higher at S–B+ than
S + B–, Pbonferroni < 0.001 (Fig. 5D, middle).

The nondecision time could be positively predicted by the
phase distance at S + B+ (mean regression coefficient = 0.016),
P (coefficient > 0) > 0.999, and S–B+ (mean regression coeffi-
cient = 0.011), P (coefficient > 0) > 0.999 (see Fig. 5C, right), with the

nondecision time decreasing linearly as the alpha phase was
closer to the optimal phase, but not at S + B– (mean regression
coefficient = 0.005), P (coefficient > 0) = 0.968 (< 0.975). In addition,
the ANOVA on the coefficients showed a main effect of position,
F(2, 46) = 27.9, P < 0.001. The predictability was higher at S + B+
than S + B– (pbonferroni < 0.001) and S–B+ (pbonferroni = 0.012) and was
also higher at S–B+ than S + B–, pbonferroni = 0.002 (Fig. 5D, right).

Discussion
In the present study, we investigated how rhythmic and sequence
information can be combined to form temporal expectation and
optimize the perceptual performance of the expected stimulus.
The behavioral results showed that the rhythm-based and
sequence-based expectation had an additive effect in improving
the perceptual performance of the expected stimulus. The
EEG results suggested a dissociation of alpha amplitude and
phase in supporting the perceptual performance under different
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structures of temporal expectation. While the amplitude of
prestimulus alpha oscillation was modulated by the rhythmic
information through PAC, the phase of prestimulus alpha
oscillation was affected by both the rhythmic and sequence
information. At the single-trial level, on the one hand, the
rhythm-based expectation improved the perceptual performance
by reducing the prestimulus alpha amplitude, whereas the
sequence-based did not further affect the alpha amplitude and
the corresponding perceptual performance. On the other hand,
the rhythm-based and the sequence-based expectation had an
additive effect in biasing the alpha phase toward the optimal
phase to improve the perceptual performance.

Mounting evidence has demonstrated that perceptual perfor-
mance can be improved by the temporal expectation of differ-
ent sources such as rhythm (Rohenkohl and Nobre 2011; Cravo
et al. 2013), sequence (Morillon et al. 2016) and temporal cues
(Samaha et al. 2015). In previous studies, however, different forms
of temporal expectation were often treated separately, with a
single form in a specific context. In studies where two forms
of temporal expectation were orthogonally manipulated (Breska
and Deouell 2014; Bouwer et al. 2020), the findings revealed both
common and different mechanisms underlying different tempo-
ral expectations. In an extension of previous findings, here we
showed that rhythm-based and sequence-based expectations can
be combined to have additive effects in optimizing the percep-
tual performance of the expected stimulus. Moreover, our HDDM
results showed that the rhythmic and sequence information had
an additive effect on the perceptual sensitivity to the expected
stimulus by both increasing the accumulation of sensory evidence
and alleviating the threshold for the perceptual decision. The
nondecision time of the perceptual decision, however, benefited
more from the rhythm-based expectation, which might be due to
more efficient motor implementation as highlighted by the link
between the motor system and the rhythmic processing (Morillon
et al. 2014; Cannon and Patel 2021). These results suggested that
the various temporal information in the environment was utilized
to affect perceptual decision-making.

It has been well-documented that brain oscillations on mul-
tiple time scales are coordinated to modulate sensorimotor pro-
cessing (Schroeder and Lakatos 2009; Palva and Palva 2018). It
has been suggested that the momentary power of high-frequency
oscillation is determined by the phase of the low-frequency oscil-
lation through cross-frequency couplings (Lakatos et al. 2008). In
accordance with this notion, our results showed a dependence of
the high-frequency amplitude on the phase of the low-frequency
neural oscillations, and this dependence manifested in the alpha
band. Specifically, the prestimulus alpha amplitude fluctuated
with the phase change of the low-frequency neural oscillation,
and this fluctuating pattern cannot be simply due to the tran-
sient neural responses to the individual stimuli. A corresponding
benefit is that a stimulus aligned with the high-excitability phase
gains improved perceptual processing, whereas a cost is that
a stimulus aligned with the low-excitability is less likely to be
efficiently recognized (Lakatos et al. 2008). This prediction was
supported by our results that the prestimulus alpha amplitude
was reduced when the rhythmic stimulus was at an optimal phase
of the low-frequency entrainment (onbeat according to preceding
rhythm, i.e. S + B+ and S–B+), and the single-trial perceptual
decision-making was critically predicted by the alpha amplitude.
However, when the rhythmic stimulus was at an antiphase of
the optimal phase (offbeat according to preceding rhythm, i.e.
S + B–), the alpha amplitude was otherwise increased, indicating a

lowered preparing state for the stimulus. Our results elucidated a
potential mechanism that the rhythmic regularity in the envi-
ronment affected the perceptual performance through the cross-
frequency coupling between the phase of the low-frequency oscil-
lations and the amplitude of prestimulus alpha oscillations.

While both the amplitude reduction (Rohenkohl and Nobre
2011; van Diepen et al. 2015; Breska and Deouell 2017) and the
shifted phase (Busch et al. 2009; Samaha et al. 2015) of pres-
timulus alpha oscillation have been suggested as neural mech-
anisms of temporal expectation, an important finding here is
the dissociated functions of alpha amplitude and alpha phase
in the different structures of temporal expectation. The current
results showed that the alpha amplitude was mainly driven by
the rhythmic information, whereas the sequence information
did not additively modulate the alpha amplitude. This notion is
supported by the following evidence: (i) at an optimal phase of
the rhythmic stimuli, the decreased alpha amplitude was equiv-
alent regardless of the presence of the sequence-based expec-
tation (S + B+ vs. S–B+); (ii) the decreased alpha amplitude at
an optimal phase (S + B+) was equivalent to the increased alpha
amplitude at antiphase (S + B–) of the rhythmic stimuli; (iii) the
predictive power of the alpha amplitude on the single-trial per-
ceptual performance was not additionally contributed by the
sequence-based expectation (S + B+ vs. S–B+). In contrast, the
alpha phase was modulated by both rhythmic and sequence infor-
mation, leading to combined effects in biasing the alpha oscilla-
tion toward an optimal phase where the perceptual performance
can be optimized. Specifically, on top of the rhythmic information,
the addition of sequence information induced a change in the
phase of the pre-target alpha oscillation (i.e. at both S + B– and
S + B+), whereas such phase change was not observed when the
sequence-based expectation was absent (i.e. at S–B+). And the
phase of the pre-target alpha oscillation was also affected by
whether the target was at an optimal phase of rhythmic stimuli
(i.e. enhanced pre-target alpha PLVs at S + B+ but not at S + B–). At
the single-trial level, the perceptual performance was predicted
by the extent to which the phase was close to the optimal phase
of the alpha oscillation, and the combination of the rhythmic and
sequence information rendered the highest predictive power.

Although the alpha amplitude was involved only in the
rhythm-based expectation here, it should not be generalized
into that alpha amplitude was immune to the sequence-based
expectation regardless of task context. Instead, the suggestion
based on the current findings is that the alpha amplitude and
alpha phase were flexibly coordinated to take effect according
to the task. The rhythmic processing has been suggested as a
default mode of the brain, the high and low excitability of which
can be reset on multiple time scales (Jones et al. 2006; Schroeder
and Lakatos 2009). Due to this dominant role of the rhythmic
processing and that a high proportion of the stimuli in the
regular stream was aligned with the high-excitability phase (i.e.
onbeat stimuli), it would be economic to have a fixed relationship
between alpha amplitude and the phase of the entrained
low-frequency oscillation, with the alpha phase being flexibly
regulated to achieve efficient processing. Here the alpha phase
was shifted both by the phase-resetting of the rhythmic stimuli,
and by the expectation acquired from the repeated sequence. The
phase shift regulated by sequence-based expectation can add
to improving the processing of the onbeat target (i.e. S + B+), and
more importantly, overcome the lowered processing of the offbeat
target (i.e. S + B–). Similar adjustment by top–down temporal
expectation in compensating for the processing of the offbeat
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targets was also shown in Breska and Deouell (2016). When there
was a high probability of offbeat targets such that the onset
of the offbeat target can be predicted, the contingent negative
variation, an event-related potential component of expectation
(Walter et al. 1964), was adjusted toward the expected time of the
offbeat target (Breska and Deouell 2016). The collaborative effects
of alpha phase and alpha amplitude in modulating perceptual
performance are also consistent with the recent findings that
whether alpha phase modulated perceptual performance was
critically dependent on the alpha amplitude (Fakche et al. 2022).
Taken together, these results not only helped to settle the debate
concerning the alpha oscillation in temporal expectation (van
Diepen et al. 2015), but also suggested that the various temporal
information was flexibly utilized to achieve the task goal through
the coordination of distinct neural processes.

One might argue that both the effects of alpha amplitude can
be simply explained by whether the target was at the onbeat
or offbeat position without necessarily introducing the neural
entrainment. It should be noted that, however, the onbeat/offbeat
relationship was not against or exclusively alternative to the
neural oscillations. Specifically, the rhythmic stimuli sequence
can lead to neural entrainment at the frequency of the rhyth-
mic stimuli (Calderone et al. 2014; Haegens and Golumbic 2018).
Consistent with this notion, the low-frequency oscillations were
observed even after the termination of the visual stimulations.
Moreover, the alpha-preferred low-frequency phase did not differ
among the three conditions, suggesting that the periodic alpha
amplitudes cannot be simply due to the transient responses
to the visual stimulations. These results consistently suggested
that the alpha amplitudes were, at least partially, modulated
by the phase of the low-frequency oscillations. Another point
raised here is that the effects observed at S + B– were due to a
rhythm change between 1.25 Hz and 2.5 Hz. On one hand, the
global rhythm change was not specific to S + B– but was present
across all three conditions, as the two kinds of rhythmic stimuli
alternated with each other. The inclusion of an offbeat position,
on the other hand, necessarily introduced a local rhythm change
from the preceding 1.25 Hz to the current 2.5 Hz. Therefore, the
current explanations and suggestions were not against or alter-
native to either the onbeat/offbeat relationship or a local rhythm
change.

A nested structure of regularity is fundamental in daily-life
activities such as speech and music (Koelsch et al. 2013; Ding
et al. 2015). Our findings shed light on the dynamic interaction
of neural oscillations in exploiting a nested structure of temporal
regularity. This echoes previous studies of different cognitive
contexts (Palva and Palva 2018). For instance, Yuan et al. (2021)
showed that the multiscale rhythmic information in a stimulus
stream was used to alleviate the attentional blink (Raymond
et al. 1992), a cognitive “bottleneck” in visual attention, and this
behavioral change was critically predicted by the PAC between
the multiscale neural oscillations that correspond to the tem-
poral structure of the stimuli (Yuan et al. 2021). Beyond visual
perception, the cross-frequency interaction was also found as
crucial for working memory (Axmacher et al. 2010) and speech
segmentation (Gross et al. 2013). Our results showed that the
dynamic interaction of brain oscillations is not only expressed
as the cross-frequency coupling (e.g. the PAC), but also as the
amplitude-phase coordination within a specific frequency range
(e.g. the alpha oscillation). Taken together, these findings sug-
gested that the multiscale brain oscillations are flexibly organized
to deal with the complex environment and empower adaptive
behavior.
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